2. Coordinates and Units

In the previous lesson, we wrote ADQL queries and used them to select and download data from the Gaia server.

In this lesson, we’ll pick up where we left off and write a query to select stars from a particular region of the sky.

Outline

We’ll start with an example that does a “cone search”; that is, it selects stars that appear in a circular region of the sky.

Then, to select stars in the vicinity of GD-1, we’ll:

  • Use Quantity objects to represent measurements with units.

  • Use Astropy to convert coordinates from one frame to another.

  • Use the ADQL keywords POLYGON, CONTAINS, and POINT to select stars that fall within a polygonal region.

  • Submit a query and download the results.

  • Store the results in a FITS file.

After completing this lesson, you should be able to

  • Use Python string formatting to compose more complex ADQL queries.

  • Work with coordinates and other quantities that have units.

  • Download the results of a query and store them in a file.

Working with Units

The measurements we will work with are physical quantities, which means that they have two parts, a value and a unit. For example, the coordinate 30 has value 30 and its units are degrees.

Until recently, most scientific computation was done with values only; units were left out of the program altogether, often with catastrophic results.

Astropy provides tools for including units explicitly in computations, which makes it possible to detect errors before they cause disasters.

To use Astropy units, we import them like this:

import astropy.units as u
Copy to clipboard

u is an object that contains most common units and all SI units.

You can use dir to list them, but you should also read the documentation.

dir(u)
Copy to clipboard
['A',
 'AA',
 'AB',
 'ABflux',
 'ABmag',
 'AU',
 'Angstrom',
 'B',
 'Ba',
 'Barye',
 'Bi',
 'Biot',
 'Bol',
 'Bq',
 'C',
 'Celsius',
 'Ci',
 'CompositeUnit',
 'D',
 'Da',
 'Dalton',
 'Debye',
 'Decibel',
 'DecibelUnit',
 'Dex',
 'DexUnit',
 'EA',
 'EAU',
 'EB',
 'EBa',
 'EC',
 'ED',
 'EF',
 'EG',
 'EGal',
 'EH',
 'EHz',
 'EJ',
 'EJy',
 'EK',
 'EL',
 'EN',
 'EOhm',
 'EP',
 'EPa',
 'ER',
 'ERy',
 'ES',
 'ESt',
 'ET',
 'EV',
 'EW',
 'EWb',
 'Ea',
 'Eadu',
 'Earcmin',
 'Earcsec',
 'Eau',
 'Eb',
 'Ebarn',
 'Ebeam',
 'Ebin',
 'Ebit',
 'Ebyte',
 'Ecd',
 'Echan',
 'Ecount',
 'Ect',
 'Ed',
 'Edeg',
 'Edyn',
 'EeV',
 'Eerg',
 'Eg',
 'Eh',
 'EiB',
 'Eib',
 'Eibit',
 'Eibyte',
 'Ek',
 'El',
 'Elm',
 'Elx',
 'Elyr',
 'Em',
 'Emag',
 'Emin',
 'Emol',
 'Eohm',
 'Epc',
 'Eph',
 'Ephoton',
 'Epix',
 'Epixel',
 'Erad',
 'Es',
 'Esr',
 'Eu',
 'Evox',
 'Evoxel',
 'Eyr',
 'F',
 'Farad',
 'Fr',
 'Franklin',
 'FunctionQuantity',
 'FunctionUnitBase',
 'G',
 'GA',
 'GAU',
 'GB',
 'GBa',
 'GC',
 'GD',
 'GF',
 'GG',
 'GGal',
 'GH',
 'GHz',
 'GJ',
 'GJy',
 'GK',
 'GL',
 'GN',
 'GOhm',
 'GP',
 'GPa',
 'GR',
 'GRy',
 'GS',
 'GSt',
 'GT',
 'GV',
 'GW',
 'GWb',
 'Ga',
 'Gadu',
 'Gal',
 'Garcmin',
 'Garcsec',
 'Gau',
 'Gauss',
 'Gb',
 'Gbarn',
 'Gbeam',
 'Gbin',
 'Gbit',
 'Gbyte',
 'Gcd',
 'Gchan',
 'Gcount',
 'Gct',
 'Gd',
 'Gdeg',
 'Gdyn',
 'GeV',
 'Gerg',
 'Gg',
 'Gh',
 'GiB',
 'Gib',
 'Gibit',
 'Gibyte',
 'Gk',
 'Gl',
 'Glm',
 'Glx',
 'Glyr',
 'Gm',
 'Gmag',
 'Gmin',
 'Gmol',
 'Gohm',
 'Gpc',
 'Gph',
 'Gphoton',
 'Gpix',
 'Gpixel',
 'Grad',
 'Gs',
 'Gsr',
 'Gu',
 'Gvox',
 'Gvoxel',
 'Gyr',
 'H',
 'Henry',
 'Hertz',
 'Hz',
 'IrreducibleUnit',
 'J',
 'Jansky',
 'Joule',
 'Jy',
 'K',
 'Kayser',
 'Kelvin',
 'KiB',
 'Kib',
 'Kibit',
 'Kibyte',
 'L',
 'L_bol',
 'L_sun',
 'LogQuantity',
 'LogUnit',
 'Lsun',
 'MA',
 'MAU',
 'MB',
 'MBa',
 'MC',
 'MD',
 'MF',
 'MG',
 'MGal',
 'MH',
 'MHz',
 'MJ',
 'MJy',
 'MK',
 'ML',
 'MN',
 'MOhm',
 'MP',
 'MPa',
 'MR',
 'MRy',
 'MS',
 'MSt',
 'MT',
 'MV',
 'MW',
 'MWb',
 'M_bol',
 'M_e',
 'M_earth',
 'M_jup',
 'M_jupiter',
 'M_p',
 'M_sun',
 'Ma',
 'Madu',
 'MagUnit',
 'Magnitude',
 'Marcmin',
 'Marcsec',
 'Mau',
 'Mb',
 'Mbarn',
 'Mbeam',
 'Mbin',
 'Mbit',
 'Mbyte',
 'Mcd',
 'Mchan',
 'Mcount',
 'Mct',
 'Md',
 'Mdeg',
 'Mdyn',
 'MeV',
 'Mearth',
 'Merg',
 'Mg',
 'Mh',
 'MiB',
 'Mib',
 'Mibit',
 'Mibyte',
 'Mjup',
 'Mjupiter',
 'Mk',
 'Ml',
 'Mlm',
 'Mlx',
 'Mlyr',
 'Mm',
 'Mmag',
 'Mmin',
 'Mmol',
 'Mohm',
 'Mpc',
 'Mph',
 'Mphoton',
 'Mpix',
 'Mpixel',
 'Mrad',
 'Ms',
 'Msr',
 'Msun',
 'Mu',
 'Mvox',
 'Mvoxel',
 'Myr',
 'N',
 'NamedUnit',
 'Newton',
 'Ohm',
 'P',
 'PA',
 'PAU',
 'PB',
 'PBa',
 'PC',
 'PD',
 'PF',
 'PG',
 'PGal',
 'PH',
 'PHz',
 'PJ',
 'PJy',
 'PK',
 'PL',
 'PN',
 'POhm',
 'PP',
 'PPa',
 'PR',
 'PRy',
 'PS',
 'PSt',
 'PT',
 'PV',
 'PW',
 'PWb',
 'Pa',
 'Padu',
 'Parcmin',
 'Parcsec',
 'Pascal',
 'Pau',
 'Pb',
 'Pbarn',
 'Pbeam',
 'Pbin',
 'Pbit',
 'Pbyte',
 'Pcd',
 'Pchan',
 'Pcount',
 'Pct',
 'Pd',
 'Pdeg',
 'Pdyn',
 'PeV',
 'Perg',
 'Pg',
 'Ph',
 'PiB',
 'Pib',
 'Pibit',
 'Pibyte',
 'Pk',
 'Pl',
 'Plm',
 'Plx',
 'Plyr',
 'Pm',
 'Pmag',
 'Pmin',
 'Pmol',
 'Pohm',
 'Ppc',
 'Pph',
 'Pphoton',
 'Ppix',
 'Ppixel',
 'Prad',
 'PrefixUnit',
 'Ps',
 'Psr',
 'Pu',
 'Pvox',
 'Pvoxel',
 'Pyr',
 'Quantity',
 'QuantityInfo',
 'QuantityInfoBase',
 'R',
 'R_earth',
 'R_jup',
 'R_jupiter',
 'R_sun',
 'Rayleigh',
 'Rearth',
 'Rjup',
 'Rjupiter',
 'Rsun',
 'Ry',
 'S',
 'ST',
 'STflux',
 'STmag',
 'Siemens',
 'SpecificTypeQuantity',
 'St',
 'Sun',
 'T',
 'TA',
 'TAU',
 'TB',
 'TBa',
 'TC',
 'TD',
 'TF',
 'TG',
 'TGal',
 'TH',
 'THz',
 'TJ',
 'TJy',
 'TK',
 'TL',
 'TN',
 'TOhm',
 'TP',
 'TPa',
 'TR',
 'TRy',
 'TS',
 'TSt',
 'TT',
 'TV',
 'TW',
 'TWb',
 'Ta',
 'Tadu',
 'Tarcmin',
 'Tarcsec',
 'Tau',
 'Tb',
 'Tbarn',
 'Tbeam',
 'Tbin',
 'Tbit',
 'Tbyte',
 'Tcd',
 'Tchan',
 'Tcount',
 'Tct',
 'Td',
 'Tdeg',
 'Tdyn',
 'TeV',
 'Terg',
 'Tesla',
 'Tg',
 'Th',
 'TiB',
 'Tib',
 'Tibit',
 'Tibyte',
 'Tk',
 'Tl',
 'Tlm',
 'Tlx',
 'Tlyr',
 'Tm',
 'Tmag',
 'Tmin',
 'Tmol',
 'Tohm',
 'Torr',
 'Tpc',
 'Tph',
 'Tphoton',
 'Tpix',
 'Tpixel',
 'Trad',
 'Ts',
 'Tsr',
 'Tu',
 'Tvox',
 'Tvoxel',
 'Tyr',
 'Unit',
 'UnitBase',
 'UnitConversionError',
 'UnitTypeError',
 'UnitsError',
 'UnitsWarning',
 'UnrecognizedUnit',
 'V',
 'Volt',
 'W',
 'Watt',
 'Wb',
 'Weber',
 'YA',
 'YAU',
 'YB',
 'YBa',
 'YC',
 'YD',
 'YF',
 'YG',
 'YGal',
 'YH',
 'YHz',
 'YJ',
 'YJy',
 'YK',
 'YL',
 'YN',
 'YOhm',
 'YP',
 'YPa',
 'YR',
 'YRy',
 'YS',
 'YSt',
 'YT',
 'YV',
 'YW',
 'YWb',
 'Ya',
 'Yadu',
 'Yarcmin',
 'Yarcsec',
 'Yau',
 'Yb',
 'Ybarn',
 'Ybeam',
 'Ybin',
 'Ybit',
 'Ybyte',
 'Ycd',
 'Ychan',
 'Ycount',
 'Yct',
 'Yd',
 'Ydeg',
 'Ydyn',
 'YeV',
 'Yerg',
 'Yg',
 'Yh',
 'Yk',
 'Yl',
 'Ylm',
 'Ylx',
 'Ylyr',
 'Ym',
 'Ymag',
 'Ymin',
 'Ymol',
 'Yohm',
 'Ypc',
 'Yph',
 'Yphoton',
 'Ypix',
 'Ypixel',
 'Yrad',
 'Ys',
 'Ysr',
 'Yu',
 'Yvox',
 'Yvoxel',
 'Yyr',
 'ZA',
 'ZAU',
 'ZB',
 'ZBa',
 'ZC',
 'ZD',
 'ZF',
 'ZG',
 'ZGal',
 'ZH',
 'ZHz',
 'ZJ',
 'ZJy',
 'ZK',
 'ZL',
 'ZN',
 'ZOhm',
 'ZP',
 'ZPa',
 'ZR',
 'ZRy',
 'ZS',
 'ZSt',
 'ZT',
 'ZV',
 'ZW',
 'ZWb',
 'Za',
 'Zadu',
 'Zarcmin',
 'Zarcsec',
 'Zau',
 'Zb',
 'Zbarn',
 'Zbeam',
 'Zbin',
 'Zbit',
 'Zbyte',
 'Zcd',
 'Zchan',
 'Zcount',
 'Zct',
 'Zd',
 'Zdeg',
 'Zdyn',
 'ZeV',
 'Zerg',
 'Zg',
 'Zh',
 'Zk',
 'Zl',
 'Zlm',
 'Zlx',
 'Zlyr',
 'Zm',
 'Zmag',
 'Zmin',
 'Zmol',
 'Zohm',
 'Zpc',
 'Zph',
 'Zphoton',
 'Zpix',
 'Zpixel',
 'Zrad',
 'Zs',
 'Zsr',
 'Zu',
 'Zvox',
 'Zvoxel',
 'Zyr',
 '__builtins__',
 '__cached__',
 '__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__path__',
 '__spec__',
 'a',
 'aA',
 'aAU',
 'aB',
 'aBa',
 'aC',
 'aD',
 'aF',
 'aG',
 'aGal',
 'aH',
 'aHz',
 'aJ',
 'aJy',
 'aK',
 'aL',
 'aN',
 'aOhm',
 'aP',
 'aPa',
 'aR',
 'aRy',
 'aS',
 'aSt',
 'aT',
 'aV',
 'aW',
 'aWb',
 'aa',
 'aadu',
 'aarcmin',
 'aarcsec',
 'aau',
 'ab',
 'abA',
 'abC',
 'abampere',
 'abarn',
 'abcoulomb',
 'abeam',
 'abin',
 'abit',
 'abyte',
 'acd',
 'achan',
 'acount',
 'act',
 'ad',
 'add_enabled_equivalencies',
 'add_enabled_units',
 'adeg',
 'adu',
 'adyn',
 'aeV',
 'aerg',
 'ag',
 'ah',
 'ak',
 'al',
 'allclose',
 'alm',
 'alx',
 'alyr',
 'am',
 'amag',
 'amin',
 'amol',
 'amp',
 'ampere',
 'angstrom',
 'annum',
 'aohm',
 'apc',
 'aph',
 'aphoton',
 'apix',
 'apixel',
 'arad',
 'arcmin',
 'arcminute',
 'arcsec',
 'arcsecond',
 'asr',
 'astronomical_unit',
 'astrophys',
 'attoBarye',
 'attoDa',
 'attoDalton',
 'attoDebye',
 'attoFarad',
 'attoGauss',
 'attoHenry',
 'attoHertz',
 'attoJansky',
 'attoJoule',
 'attoKayser',
 'attoKelvin',
 'attoNewton',
 'attoOhm',
 'attoPascal',
 'attoRayleigh',
 'attoSiemens',
 'attoTesla',
 'attoVolt',
 'attoWatt',
 'attoWeber',
 'attoamp',
 'attoampere',
 'attoannum',
 'attoarcminute',
 'attoarcsecond',
 'attoastronomical_unit',
 'attobarn',
 'attobarye',
 'attobit',
 'attobyte',
 'attocandela',
 'attocoulomb',
 'attocount',
 'attoday',
 'attodebye',
 'attodegree',
 'attodyne',
 'attoelectronvolt',
 'attofarad',
 'attogal',
 'attogauss',
 'attogram',
 'attohenry',
 'attohertz',
 'attohour',
 'attohr',
 'attojansky',
 'attojoule',
 'attokayser',
 'attolightyear',
 'attoliter',
 'attolumen',
 'attolux',
 'attometer',
 'attominute',
 'attomole',
 'attonewton',
 'attoparsec',
 'attopascal',
 'attophoton',
 'attopixel',
 'attopoise',
 'attoradian',
 'attorayleigh',
 'attorydberg',
 'attosecond',
 'attosiemens',
 'attosteradian',
 'attostokes',
 'attotesla',
 'attovolt',
 'attovoxel',
 'attowatt',
 'attoweber',
 'attoyear',
 'au',
 'avox',
 'avoxel',
 'ayr',
 'b',
 'bar',
 'barn',
 'barye',
 'beam',
 'beam_angular_area',
 'becquerel',
 'bin',
 'binary_prefixes',
 'bit',
 'bol',
 'brightness_temperature',
 'byte',
 'cA',
 'cAU',
 'cB',
 'cBa',
 'cC',
 'cD',
 'cF',
 'cG',
 'cGal',
 'cH',
 'cHz',
 'cJ',
 'cJy',
 'cK',
 'cL',
 'cN',
 'cOhm',
 'cP',
 'cPa',
 'cR',
 'cRy',
 'cS',
 'cSt',
 'cT',
 'cV',
 'cW',
 'cWb',
 'ca',
 'cadu',
 'candela',
 'carcmin',
 'carcsec',
 'cau',
 'cb',
 'cbarn',
 'cbeam',
 'cbin',
 'cbit',
 'cbyte',
 'ccd',
 'cchan',
 'ccount',
 'cct',
 'cd',
 'cdeg',
 'cdyn',
 'ceV',
 'centiBarye',
 'centiDa',
 'centiDalton',
 'centiDebye',
 'centiFarad',
 'centiGauss',
 'centiHenry',
 'centiHertz',
 'centiJansky',
 'centiJoule',
 'centiKayser',
 'centiKelvin',
 'centiNewton',
 'centiOhm',
 'centiPascal',
 'centiRayleigh',
 'centiSiemens',
 'centiTesla',
 'centiVolt',
 'centiWatt',
 'centiWeber',
 'centiamp',
 'centiampere',
 'centiannum',
 'centiarcminute',
 'centiarcsecond',
 'centiastronomical_unit',
 'centibarn',
 'centibarye',
 'centibit',
 'centibyte',
 'centicandela',
 'centicoulomb',
 'centicount',
 'centiday',
 'centidebye',
 'centidegree',
 'centidyne',
 'centielectronvolt',
 'centifarad',
 'centigal',
 'centigauss',
 'centigram',
 'centihenry',
 'centihertz',
 'centihour',
 'centihr',
 'centijansky',
 'centijoule',
 'centikayser',
 'centilightyear',
 'centiliter',
 'centilumen',
 'centilux',
 'centimeter',
 'centiminute',
 'centimole',
 'centinewton',
 'centiparsec',
 'centipascal',
 'centiphoton',
 'centipixel',
 'centipoise',
 'centiradian',
 'centirayleigh',
 'centirydberg',
 'centisecond',
 'centisiemens',
 'centisteradian',
 'centistokes',
 'centitesla',
 'centivolt',
 'centivoxel',
 'centiwatt',
 'centiweber',
 'centiyear',
 'cerg',
 'cg',
 'cgs',
 'ch',
 'chan',
 'ck',
 'cl',
 'clm',
 'clx',
 'clyr',
 'cm',
 'cmag',
 'cmin',
 'cmol',
 'cohm',
 'core',
 'coulomb',
 'count',
 'cpc',
 'cph',
 'cphoton',
 'cpix',
 'cpixel',
 'crad',
 'cs',
 'csr',
 'ct',
 'cu',
 'curie',
 'cvox',
 'cvoxel',
 'cy',
 'cycle',
 'cyr',
 'd',
 'dA',
 'dAU',
 'dB',
 'dBa',
 'dC',
 'dD',
 'dF',
 'dG',
 'dGal',
 'dH',
 'dHz',
 'dJ',
 'dJy',
 'dK',
 'dL',
 'dN',
 'dOhm',
 'dP',
 'dPa',
 'dR',
 'dRy',
 'dS',
 'dSt',
 ...]
Copy to clipboard

To create a quantity, we multiply a value by a unit.

angle = 10 * u.degree
type(angle)
Copy to clipboard
astropy.units.quantity.Quantity
Copy to clipboard

The result is a Quantity object. Jupyter knows how to display Quantities like this:

angle
Copy to clipboard
10

Quantities provide a method called to that converts to other units. For example, we can compute the number of arcminutes in angle:

angle_arcmin = angle.to(u.arcmin)
angle_arcmin
Copy to clipboard
600

If you add quantities, Astropy converts them to compatible units, if possible:

angle + 30 * u.arcmin
Copy to clipboard
10.5

If the units are not compatible, you get an error. For example:

angle + 5 * u.second
Copy to clipboard

causes a UnitConversionError.

Exercise

Create a quantity that represents 5 arcminutes and assign it to a variable called radius.

Then convert it to degrees.

# Solution

radius = 5 * u.arcmin
print(radius)

radius.to(u.degree)
Copy to clipboard
5.0 arcmin
Copy to clipboard
0.083333333

Selecting a Region

One of the most common ways to restrict a query is to select stars in a particular region of the sky. For example, here’s a query from the Gaia archive documentation that selects objects in a circular region centered at (88.8, 7.4) with a search radius of 5 arcmin (0.08333 deg).

query_cone = """SELECT 
TOP 10 
source_id
FROM gaiadr2.gaia_source
WHERE 1=CONTAINS(
  POINT(ra, dec),
  CIRCLE(88.8, 7.4, 0.08333333))
"""
Copy to clipboard

This query uses three keywords that are specific to ADQL (not SQL):

  • POINT: a location in ICRS coordinates, specified in degrees of right ascension and declination.

  • CIRCLE: a circle where the first two values are the coordinates of the center and the third is the radius in degrees.

  • CONTAINS: a function that returns 1 if a POINT is contained in a shape and 0 otherwise.

Here is the documentation of CONTAINS.

A query like this is called a cone search because it selects stars in a cone. Here’s how we run it.

from astroquery.gaia import Gaia

job = Gaia.launch_job(query_cone)
job
Copy to clipboard
Created TAP+ (v1.2.1) - Connection:
	Host: gea.esac.esa.int
	Use HTTPS: True
	Port: 443
	SSL Port: 443
Created TAP+ (v1.2.1) - Connection:
	Host: geadata.esac.esa.int
	Use HTTPS: True
	Port: 443
	SSL Port: 443
Copy to clipboard
<astroquery.utils.tap.model.job.Job at 0x7f277785fa30>
Copy to clipboard
results = job.get_results()
results
Copy to clipboard
Table length=10
source_id
int64
3322773965056065536
3322773758899157120
3322774068134271104
3322773930696320512
3322774377374425728
3322773724537891456
3322773724537891328
3322773930696321792
3322773724537890944
3322773930696322176

Exercise

When you are debugging queries like this, you can use TOP to limit the size of the results, but then you still don’t know how big the results will be.

An alternative is to use COUNT, which asks for the number of rows that would be selected, but it does not return them.

In the previous query, replace TOP 10 source_id with COUNT(source_id) and run the query again. How many stars has Gaia identified in the cone we searched?

# Solution

query = """SELECT 
COUNT(source_id)
FROM gaiadr2.gaia_source
WHERE 1=CONTAINS(
  POINT(ra, dec),
  CIRCLE(88.8, 7.4, 0.08333333))
"""

job = Gaia.launch_job(query)
results = job.get_results()
results
Copy to clipboard
Table length=1
count
int64
594

Getting GD-1 Data

From the Price-Whelan and Bonaca paper, we will try to reproduce Figure 1, which includes this representation of stars likely to belong to GD-1:

https://github.com/datacarpentry/astronomy-python/raw/gh-pages/fig/gd1-4.png

The axes of this figure are defined so the x-axis is aligned with the stars in GD-1, and the y-axis is perpendicular.

  • Along the x-axis (ϕ1) the figure extends from -100 to 20 degrees.

  • Along the y-axis (ϕ2) the figure extends from about -8 to 4 degrees.

Ideally, we would select all stars from this rectangle, but there are more than 10 million of them, so

  • That would be difficult to work with,

  • As anonymous Gaia users, we are limited to 3 million rows in a single query, and

  • While we are developing and testing code, it will be faster to work with a smaller dataset.

So we’ll start by selecting stars in a smaller rectangle near the center of GD-1, from -55 to -45 degrees ϕ1 and -8 to 4 degrees ϕ2.

But first we let’s see how to represent these coordinates with Astropy.

Transforming coordinates

Astropy provides a SkyCoord object that represents sky coordinates relative to a specified frame.

The following example creates a SkyCoord object that represents the approximate coordinates of Betelgeuse (alf Ori) in the ICRS frame.

ICRS is the “International Celestial Reference System”, adopted in 1997 by the International Astronomical Union.

from astropy.coordinates import SkyCoord

ra = 88.8 * u.degree
dec = 7.4 * u.degree
coord_icrs = SkyCoord(ra=ra, dec=dec, frame='icrs')

coord_icrs
Copy to clipboard
<SkyCoord (ICRS): (ra, dec) in deg
    (88.8, 7.4)>
Copy to clipboard

SkyCoord provides a function that transforms to other frames. For example, we can transform coords_icrs to Galactic coordinates like this:

coord_galactic = coord_icrs.transform_to('galactic')
coord_galactic
Copy to clipboard
<SkyCoord (Galactic): (l, b) in deg
    (199.79693102, -8.95591653)>
Copy to clipboard

Notice that in the Galactic frame, the coordinates are called l and b, not ra and dec.

To transform to and from GD-1 coordinates, we’ll use a frame defined by Gala, which is an Astropy-affiliated library that provides tools for galactic dynamics.

Gala provides GD1Koposov10, which is “a Heliocentric spherical coordinate system defined by the orbit of the GD-1 stream”.

from gala.coordinates import GD1Koposov10

gd1_frame = GD1Koposov10()
gd1_frame
Copy to clipboard
<GD1Koposov10 Frame>
Copy to clipboard

We can use it to find the coordinates of Betelgeuse in the GD-1 frame, like this:

coord_gd1 = coord_icrs.transform_to(gd1_frame)
coord_gd1
Copy to clipboard
<SkyCoord (GD1Koposov10): (phi1, phi2) in deg
    (-94.97222038, 34.5813813)>
Copy to clipboard

Notice that the coordinates are called phi1 and phi2. These are the coordinates shown in the figure from the paper, above.

Exercise

Let’s find the location of GD-1 in ICRS coordinates.

  1. Create a SkyCoord object at 0°, 0° in the GD-1 frame.

  2. Transform it to the ICRS frame.

Hint: Because ICRS is built into Astropy, you can specify it by name, icrs (as we did with galactic).

# Solution

origin_gd1 = SkyCoord(0*u.degree, 0*u.degree, frame=gd1_frame)

# OR

origin_gd1 = SkyCoord(phi1=0*u.degree, 
                      phi2=0*u.degree, 
                      frame=gd1_frame)

# Note: because ICRS is built into Astropy, 
# we can identify it by string name
origin_gd1.transform_to('icrs')

# More formally, we could instantiate it
from astropy.coordinates import ICRS
icrs_frame = ICRS()
origin_gd1.transform_to(icrs_frame)
Copy to clipboard
<SkyCoord (ICRS): (ra, dec) in deg
    (200., 59.4504341)>
Copy to clipboard

Notice that the origin of the GD-1 frame maps to ra=200, exactly, in ICRS. That’s by design.

Selecting a rectangle

Now we’ll use these coordinate transformations to define a rectangle in the GD-1 frame and transform it to ICRS.

The following variables define the boundaries of the rectangle in ϕ1 and ϕ2.

phi1_min = -55 * u.degree
phi1_max = -45 * u.degree
phi2_min = -8 * u.degree
phi2_max = 4 * u.degree
Copy to clipboard

To create a rectangle, we’ll use the following function, which takes the lower and upper bounds as parameters.

def make_rectangle(x1, x2, y1, y2):
    """Return the corners of a rectangle."""
    xs = [x1, x1, x2, x2, x1]
    ys = [y1, y2, y2, y1, y1]
    return xs, ys
Copy to clipboard

The return value is a tuple containing a list of coordinates in phi1 followed by a list of coordinates in phi2.

phi1_rect, phi2_rect = make_rectangle(
    phi1_min, phi1_max, phi2_min, phi2_max)
Copy to clipboard

phi1_rect and phi2_rect contains the coordinates of the corners of a rectangle in the GD-1 frame.

In order to use them in a Gaia query, we have to convert them to ICRS. First we’ll put them into a SkyCoord object.

corners = SkyCoord(phi1=phi1_rect, phi2=phi2_rect, frame=gd1_frame)
corners
Copy to clipboard
<SkyCoord (GD1Koposov10): (phi1, phi2) in deg
    [(-55., -8.), (-55.,  4.), (-45.,  4.), (-45., -8.), (-55., -8.)]>
Copy to clipboard

Now we can use transform_to to convert to ICRS coordinates.

corners_icrs = corners.transform_to('icrs')
corners_icrs
Copy to clipboard
<SkyCoord (ICRS): (ra, dec) in deg
    [(146.27533314, 19.26190982), (135.42163944, 25.87738723),
     (141.60264825, 34.3048303 ), (152.81671045, 27.13611254),
     (146.27533314, 19.26190982)]>
Copy to clipboard

Notice that a rectangle in one coordinate system is not necessarily a rectangle in another. In this example, the result is a (non-rectangular) polygon.

Defining a polygon

In order to use this polygon as part of an ADQL query, we have to convert it to a string with a comma-separated list of coordinates, as in this example:

"""
POLYGON(143.65, 20.98, 
        134.46, 26.39, 
        140.58, 34.85, 
        150.16, 29.01)
"""
Copy to clipboard

SkyCoord provides to_string, which produces a list of strings.

t = corners_icrs.to_string()
t
Copy to clipboard
['146.275 19.2619',
 '135.422 25.8774',
 '141.603 34.3048',
 '152.817 27.1361',
 '146.275 19.2619']
Copy to clipboard

We can use the Python string function join to join t into a single string (with spaces between the pairs):

s = ' '.join(t)
s
Copy to clipboard
'146.275 19.2619 135.422 25.8774 141.603 34.3048 152.817 27.1361 146.275 19.2619'
Copy to clipboard

That’s almost what we need, but we have to replace the spaces with commas.

s.replace(' ', ', ')
Copy to clipboard
'146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619'
Copy to clipboard

The following function combines these steps.

def skycoord_to_string(skycoord):
    """Convert SkyCoord to string."""
    t = skycoord.to_string()
    s = ' '.join(t)
    return s.replace(' ', ', ')
Copy to clipboard

Here’s how we use it.

point_list = skycoord_to_string(corners_icrs)
point_list
Copy to clipboard
'146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619'
Copy to clipboard

Assembling the query

Now we’re ready to assemble the query. We need columns again (as we saw in the previous lesson).

columns = 'source_id, ra, dec, pmra, pmdec, parallax'
Copy to clipboard

And here’s the query base we used in the previous lesson:

query3_base = """SELECT 
TOP 10 
{columns}
FROM gaiadr2.gaia_source
WHERE parallax < 1
  AND bp_rp BETWEEN -0.75 AND 2
"""
Copy to clipboard

Now we’ll add a WHERE clause to select stars in the polygon we defined.

query4_base = """SELECT
TOP 10
{columns}
FROM gaiadr2.gaia_source
WHERE parallax < 1
  AND bp_rp BETWEEN -0.75 AND 2 
  AND 1 = CONTAINS(POINT(ra, dec), 
                   POLYGON({point_list}))
"""
Copy to clipboard

The query base contains format specifiers for columns and point_list.

We’ll use format to fill in these values.

query4 = query4_base.format(columns=columns, 
                          point_list=point_list)
print(query4)
Copy to clipboard
SELECT
TOP 10
source_id, ra, dec, pmra, pmdec
FROM gaiadr2.gaia_source
WHERE parallax < 1
  AND bp_rp BETWEEN -0.75 AND 2 
  AND 1 = CONTAINS(POINT(ra, dec), 
                   POLYGON(146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619))
Copy to clipboard

As always, we should take a minute to proof-read the query before we launch it.

job = Gaia.launch_job_async(query4)
print(job)
Copy to clipboard
INFO: Query finished. [astroquery.utils.tap.core]
<Table length=10>
   name    dtype    unit                              description                            
--------- ------- -------- ------------------------------------------------------------------
source_id   int64          Unique source identifier (unique within a particular Data Release)
       ra float64      deg                                                    Right ascension
      dec float64      deg                                                        Declination
     pmra float64 mas / yr                         Proper motion in right ascension direction
    pmdec float64 mas / yr                             Proper motion in declination direction
Jobid: 1615815873808O
Phase: COMPLETED
Owner: None
Output file: async_20210315094433.vot
Results: None
Copy to clipboard

Here are the results.

results = job.get_results()
results
Copy to clipboard
Table length=10
source_idradecpmrapmdec
degdegmas / yrmas / yr
int64float64float64float64float64
637987125186749568142.4830193599102321.75771616932985-2.51683846838757662.941813096629439
638285195917112960142.2545294134634422.4761681711413782.6627020143457996-12.165984395577347
638073505568978688142.6452855746807422.1669322495307818.30674739454163-7.950659620550862
638086386175786752142.5773943092603422.227919514013650.9877856720147953-2.584105480335548
638049655615392384142.5891356447861822.1107831666774180.24443878227817095-4.941079187010136
638267565075964032141.8176222899961422.375696125322275-3.4131745896607961.8838892877285924
638028902333511168143.1833980131767722.25124658123697.848511762712128-21.391145547787154
638085767700610432142.934731946458922.46244080823965-3.6585960944321476-12.486419770278376
638299863230178304142.2676974582326722.640183776884836-1.81683708922182971.0537342990941316
637973067758974208142.8955129286901221.612824100339875-8.645166256559063-44.41164172204947

Finally, we can remove TOP 10 run the query again.

The result is bigger than our previous queries, so it will take a little longer.

query5_base = """SELECT
{columns}
FROM gaiadr2.gaia_source
WHERE parallax < 1
  AND bp_rp BETWEEN -0.75 AND 2 
  AND 1 = CONTAINS(POINT(ra, dec), 
                   POLYGON({point_list}))
"""
Copy to clipboard
query5 = query5_base.format(columns=columns, 
                          point_list=point_list)
print(query5)
Copy to clipboard
SELECT
source_id, ra, dec, pmra, pmdec
FROM gaiadr2.gaia_source
WHERE parallax < 1
  AND bp_rp BETWEEN -0.75 AND 2 
  AND 1 = CONTAINS(POINT(ra, dec), 
                   POLYGON(146.275, 19.2619, 135.422, 25.8774, 141.603, 34.3048, 152.817, 27.1361, 146.275, 19.2619))
Copy to clipboard
job = Gaia.launch_job_async(query5)
print(job)
Copy to clipboard
INFO: Query finished. [astroquery.utils.tap.core]
<Table length=140339>
   name    dtype    unit                              description                            
--------- ------- -------- ------------------------------------------------------------------
source_id   int64          Unique source identifier (unique within a particular Data Release)
       ra float64      deg                                                    Right ascension
      dec float64      deg                                                        Declination
     pmra float64 mas / yr                         Proper motion in right ascension direction
    pmdec float64 mas / yr                             Proper motion in declination direction
Jobid: 1615815886707O
Phase: COMPLETED
Owner: None
Output file: async_20210315094446.vot
Results: None
Copy to clipboard
results = job.get_results()
len(results)
Copy to clipboard
140339
Copy to clipboard

There are more than 100,000 stars in this polygon, but that’s a manageable size to work with.

Saving results

This is the set of stars we’ll work with in the next step. But since we have a substantial dataset now, this is a good time to save it.

Storing the data in a file means we can shut down this notebook and pick up where we left off without running the previous query again.

Astropy Table objects provide write, which writes the table to disk.

filename = 'gd1_results.fits'
results.write(filename, overwrite=True)
Copy to clipboard

Because the filename ends with fits, the table is written in the FITS format, which preserves the metadata associated with the table.

If the file already exists, the overwrite argument causes it to be overwritten.

We can use getsize to confirm that the file exists and check the size:

from os.path import getsize

MB = 1024 * 1024
getsize(filename) / MB
Copy to clipboard
5.36407470703125
Copy to clipboard

Summary

In this notebook, we composed more complex queries to select stars within a polygonal region of the sky. Then we downloaded the results and saved them in a FITS file.

In the next notebook, we’ll reload the data from this file and replicate the next step in the analysis, using proper motion to identify stars likely to be in GD-1.

Best practices

  • For measurements with units, use Quantity objects that represent units explicitly and check for errors.

  • Use the format function to compose queries; code written this way is easier to read and less error-prone.

  • Develop queries incrementally: start with something simple, test it, and add a little bit at a time.

  • Once you have a query working, save the data in a local file. If you shut down the notebook and come back to it later, you can reload the file; you don’t have to run the query again.