{ "cells": [ { "cell_type": "markdown", "id": "d2f1937f", "metadata": {}, "source": [ "# Distributions" ] }, { "cell_type": "markdown", "id": "32393b32", "metadata": { "tags": [ "remove-print" ] }, "source": [ "[Click here to run this notebook on Colab](https://colab.research.google.com/github/AllenDowney/ThinkStats/blob/v3/nb/chap02.ipynb)." ] }, { "cell_type": "code", "execution_count": null, "id": "29ea6b54", "metadata": { "tags": [ "remove-print", "hide-cell" ] }, "outputs": [], "source": [ "%load_ext nb_black\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 1, "id": "1b3797b5", "metadata": { "tags": [ "remove-print", "hide-cell" ] }, "outputs": [], "source": [ "from os.path import basename, exists\n", "\n", "\n", "def download(url):\n", " filename = basename(url)\n", " if not exists(filename):\n", " from urllib.request import urlretrieve\n", "\n", " local, _ = urlretrieve(url, filename)\n", " print(\"Downloaded \" + local)\n", "\n", "\n", "download(\"https://github.com/AllenDowney/ThinkStats/raw/v3/nb/thinkstats.py\")" ] }, { "cell_type": "code", "execution_count": 2, "id": "f43cb8b9", "metadata": { "tags": [ "remove-print", "hide-cell" ] }, "outputs": [], "source": [ "try:\n", " import empiricaldist\n", "except ImportError:\n", " !pip install empiricaldist" ] }, { "cell_type": "code", "execution_count": 3, "id": "338d162a", "metadata": { "tags": [ "remove-print", "hide-cell" ] }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from thinkstats import decorate" ] }, { "cell_type": "markdown", "id": "01d03795", "metadata": {}, "source": [ "## Histograms\n", "\n", "One of the best ways to describe a variable is to report the quantities it contains and how many times each one appears.\n", "This description is called the **distribution** of the variable.\n", "\n", "A common representation of a distribution is a **histogram**, which is a graph that shows the **frequency** of each quantity, which is the number of times it appears.\n", "\n", "To represent distributions, we'll use a library called `empiricaldist`.\n", "In this context, \"empirical\" means that the distributions are based on data rather than mathematical models.\n", "\n", "`empiricaldist` provides a class called `Hist` we can use to compute and plot a histogram.\n", "We can import it like this." ] }, { "cell_type": "code", "execution_count": 4, "id": "142ef9f5", "metadata": {}, "outputs": [], "source": [ "from empiricaldist import Hist" ] }, { "cell_type": "markdown", "id": "026f22d6", "metadata": {}, "source": [ "To show how it works, we'll start with a small list of values." ] }, { "cell_type": "code", "execution_count": 5, "id": "a8c88e69", "metadata": {}, "outputs": [], "source": [ "t = [1.0, 2.0, 2.0, 3.0, 5.0]" ] }, { "cell_type": "markdown", "id": "6addd31b", "metadata": {}, "source": [ "`Hist` provides a method called `from_seq` that takes a sequence and makes a `Hist` object." ] }, { "cell_type": "code", "execution_count": 6, "id": "32a8fcc3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
freqs
1.01
2.02
3.01
5.01
\n", "
" ], "text/plain": [ "1.0 1\n", "2.0 2\n", "3.0 1\n", "5.0 1\n", "Name: , dtype: int64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hist = Hist.from_seq(t)\n", "hist" ] }, { "cell_type": "markdown", "id": "d7c83115", "metadata": {}, "source": [ "A `Hist` object is a kind of Pandas `Series` that contains quantities and their frequencies.\n", "In this example, the quantity `1.0` corresponds to frequency 1, the quantity `2.0` corresponds to frequency 2, etc.\n", "\n", "`Hist` provides a method called `bar` that plots the histogram as a bar chart." ] }, { "cell_type": "code", "execution_count": 7, "id": "24f2055e", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAAesElEQVR4nO3df1CVZf7/8ReBmAW2iLX+OLAIR1JO4kFps3SlSM3RZIUgTaU0TrorzjJW30bGZtucxumnzlqnmQqMdkl3NFalTde1Kcwf/QAXBvMoGxnCUSsnKdRNkcP5/tF4f2JVPCa3B++ej5l75tz3dV3nfp8zymuu+77PfYf4/X6/AACwqKuCXQAAAGYi6AAAlkbQAQAsjaADAFgaQQcAsDSCDgBgaQQdAMDSwoJdQFfr3bu3bDZbsMsAAFxGXq9XLS0t52yzXNDZbDZ5PJ5glwEAuIySkpLO28ahSwCApRF0AABLI+gAAJZmatA1NTXpzjvv1NChQ+VwOFRYWHjOfhUVFXI4HLLb7XK5XPL5fJKktrY2zZkzR3a7XQ6HQ9u2bTOzXACABZkadGFhYXrmmWe0d+9eVVdXa/v27dqwYUOHPu3t7XK5XFq7dq3q6+vV0tKi0tJSSVJJSYlOnTql+vp6rV69Wnl5eeJhCwCAi2Fq0PXv31+pqamSpPDwcKWkpKixsbFDn8rKSg0YMMC4YiYvL09lZWWSpLKyMrlcLklScnKyoqOjVV1dbWbJAACLuWzn6I4ePar169dr/PjxHbZ7vV7FxMQY67GxsWpqarpgGwAAgbgsv6NrbW1Vdna2CgoKNGTIkA5tnR2KDOQwpdvtltvtNtabm5t/eqEIWNyid4JdwmXR8PTkYJcA4BKZPqPz+XyaMWOGnE6nHnnkkbPaY2JiOszSGhsbjTubdNZ2Rn5+vjwej7FERUWZ9EkAAFci04Nu7ty5ioyM1AsvvHDO9tTUVHm9XuNuJsXFxcrKypIkZWVlqaioSJJUW1urI0eOaMSIEWaXDACwEFODbseOHVq5cqWqqqqUkpIip9OpFStWqKqqSpMmTZIkhYaGqqioSNnZ2UpISFBERIRyc3MlSbNnz1aPHj1kt9s1ffp0FRcXKyQkxMySAQAWE+K32PX6SUlJ3OvyMuAcHYDupLO//dwZBQBgaQQdAMDSCDoAgKURdAAASyPoAACWRtABACyNoAMAWBpBBwCwNIIOAGBpBB0AwNIIOgCApRF0AABLI+gAAJZG0AEALI2gAwBYGkEHALA0U4OuoKBANptNYWFh52z/+uuv5XQ6jaVfv37KzMyUJFVUVCgyMtJoO7MdAICLce4E6iI5OTkqLCyUzWY7Z/sNN9ygmpoaY33cuHHKyckx1m+55Ra9++67ZpYIALA4U4NuzJgxAfc9dOiQqqqqVF5ebmJFAICfm25zjm716tWaOnWqrrnmGmPbrl27lJKSorFjx2rz5s1BrA4AcKUydUZ3MUpLS/Xcc88Z6yNGjNCBAwfUu3dv7dmzRxMnTtQHH3ygQYMGdRjndrvldruN9ebm5stWMwCg++sWMzqPx6MjR44oPT3d2Na7d2/17t1bkuRwODR69Gj9+9//Pmtsfn6+PB6PsURFRV22ugEA3V+3CLq//vWvmjFjhq666v/KOXz4sPx+vyTp4MGD+vDDD+VwOIJVIgDgCmVq0M2bN082m00+n082m035+fmqqqrSpEmTjD5+v1+rVq3SrFmzOowtKyvTTTfdJKfTqcmTJ+upp57SkCFDzCwXAGBBIf4z0yaLSEpKksfjCXYZlhe36J1gl3BZNDw9OdglAAhAZ3/7u8WhSwAAzELQAQAsjaADAFgaQQcAsDSCDgBgaQQdAMDSCDoAgKURdAAASyPoAACWRtABACyNoAMAWBpBBwCwNIIOAGBpBB0AwNIIOgCApRF0AABLMzXoCgoKZLPZFBYWdt4+cXFxcjgccjqdcjqd2r17t9G2aNEi2e12JSYmqqyszMxSAQAWdf4E6gI5OTkqLCyUzWbrtN/mzZvP6vPuu+9q586dqqur05dffqlbb71Vd911lyIiIswsGQBgMabO6MaMGaN+/fr9pLFlZWWaPXu2QkNDNXDgQI0ePVr/+te/urhCAIDVdYtzdFOmTJHT6dTixYt1+vRpSZLX61VMTIzRJzY2Vk1NTcEqEQBwhQp60G3btk3V1dXasWOH6urq9Pzzz0uS/H5/QOPdbreSkpKMpbm52cxyAQBXmKAH3ZlZ27XXXiuXy6WdO3ca2388g2tsbDznub78/Hx5PB5jiYqKujyFAwCuCEENuhMnTqilpUWS5PP5VFZWpuTkZElSVlaWSkpK5PP5dPDgQW3fvl0TJkwIZrkAgCuQqUE3b9482Ww2+Xw+2Ww25efnq6qqSpMmTZIkffXVVxo7dqySk5OVnJwsv9+vxYsXS5LGjx+vUaNGKTExUbfffruWLVumyMhIM8sFAFhQiD/Qk2FXiKSkJHk8nmCXYXlxi94JdgmXRcPTk4NdAoAAdPa3P+jn6AAAMBNBBwCwNIIOAGBpBB0AwNIIOgCApRF0AABLI+gAAJZG0AEALI2gAwBYGkEHALA0gg4AYGkEHQDA0gg6AIClEXQAAEsj6AAAlhZQ0G3dutXsOgAAMEVAQbd06VINHTpUzz77rL7++uuA37ygoEA2m01hYWHnbG9qatKdd96poUOHyuFwqLCw0GirqKhQZGSknE6nnE6nMjMzA94vAABnBBR0mzdv1qZNm3T8+HGNGjVK2dnZ2rx58wXH5eTkqKqq6rztYWFheuaZZ7R3715VV1dr+/bt2rBhg9F+yy23qKamRjU1NVq3bl0gpQIA0MG5p1rnEBcXpyeffFKpqamaP3++qqqq1LNnTz3//POaMmXKOceMGTOm0/fs37+/+vfvL0kKDw9XSkqKGhsbL6J8AAA6F9CMrqmpSU888YQSExO1Zs0arVq1Sg0NDdq0aZMWLFjQJYUcPXpU69ev1/jx441tu3btUkpKisaOHRvQDBIAgP8V0Ixu/Pjxeuihh/Thhx+qb9++xvb4+HgtXLjwkotobW1Vdna2CgoKNGTIEEnSiBEjdODAAfXu3Vt79uzRxIkT9cEHH2jQoEEdxrrdbrndbmO9ubn5kusBAFhHiN/v95u9k7CwMLW1tZ2zzefzadq0aYqNjdWyZcvO+x7Tp09XTk6O7rnnnk73lZSUJI/Hc0n14sLiFr0T7BIui4anJwe7BAAB6Oxvf0CHLtPS0jrMlI4ePao77rijS4qbO3euIiMj9cILL3TYfvjwYZ3J4IMHD+rDDz+Uw+Hokn0CAH4+Agq67777TlFRUcZ6nz59AjpEOG/ePNlsNvl8PtlsNuXn56uqqkqTJk2SJO3YsUMrV65UVVWVUlJS5HQ6tWLFCklSWVmZbrrpJjmdTk2ePFlPPfWUcVgTAIBABXSOLiQkRF9//bVuuOEGSdKXX34Z0Ju/8sor59y+ceNGSdLo0aN1viOnCxYs6LILXQAAP18BBV1hYaFGjRplnB/7+9//rqefftrUwgAA6AoBBd29996rYcOG6b333pPf79c777zDYUQAwBUh4B+MDx06VEOHDjWzFgAAulxAF6Ns2LBBiYmJuvrqqxUeHq4ePXooPDzc7NoAALhkAQXdI488otWrV+vkyZNqbW3V6dOn1draanZtAABcsoCC7vrrr9fIkSPNrgUAgC4X0Dm6sWPHav78+crJyVHPnj2N7bfddptphQEA0BUCCrpPPvlEkrRkyRJjW0hIiN577z1zqgIAoIsEFHTvv/++2XUAAGCKgM7RHTt2TIWFhZo5c6Ykqa6ujgehAgCuCAEF3YMPPqjo6GjV1tZKkmJjY/Xkk0+aWhgAAF0hoKDbv3+/Hn30UYWF/XCks1evXgoJCTG1MAAAukJAQdejRw+dPn3aCLeDBw/qqqsCGgoAQFAFlFaPPvqo7r77bn311Vd6+OGHNWbMGD3++ONm1wYAwCUL6KrL7OxsJScna8uWLfL7/dq0aRM3dQYAXBECvqlzYmKiEhMTzawFAIAuF9Chy0GDBik+Pv6s5UIKCgpks9mMi1jOpaKiQg6HQ3a7XS6XSz6fT5LU1tamOXPmyG63y+FwaNu2bQF+JAAA/k9AM7rt27cbr0+ePKm1a9fq+++/v+C4nJwcFRYWymaznbO9vb1dLpdL5eXlSkpK0r333qvS0lI98MADKikp0alTp1RfX6/a2lplZ2errq6Oqz0BABcloBndwIEDjSUhIUGLFi3Sxo0bLzhuzJgx6tev33nbKysrNWDAACUlJUmS8vLyVFZWJkkqKyuTy+WSJCUnJys6OlrV1dWBlAsAgCGgGd2hQ4eM1+3t7dq1a5eOHz9+yTv3er2KiYkx1mNjY9XU1NRp24gRIy55vwCAn4+Agm706NEKCQmR3+9XWFiY4uPjtXLlykveud/v/0ltP+Z2u+V2u4315ubmS65LkuIWvdMl79PdNTw9OdglWBb/hnCp+DfUNQIKui+++MKUncfExBgzOElqbGw0zuedaRs8ePBZbT+Wn5+v/Px8Y/3MYVAAAKQAg27VqlWdts+YMeMn7Tw1NVVer1cej0dJSUkqLi5WVlaWJCkrK0tFRUVKT09XbW2tjhw5wmFLAMBFCzjotm/frvT0dEk/PLZnzJgx6tu3r0JCQs4bdPPmzdM777wjn88nm82m3/72t5ozZ47++Mc/auPGjQoNDVVRUZGys7N16tQppaWlKTc3V5I0e/Zsbd++XXa7XeHh4SouLuaKSwDARQso6Nra2vTpp58ahw4PHjwol8ul119/vdNxr7zyyjm3//iKzfT0dHk8nrP69OjRQ2+88UYg5QEAcF4B/bzgf8+PDRw4UAcOHDCtKAAAukpAM7rU1FTNmjVLs2bNkvTDoczU1FRTCwMAoCsEFHSvvfaaXn75Zb366quSpLS0NP3ud78ztTAAALpCQEHXs2dPLVy4ULNmzdL1119vdk0AAHSZgM7RffDBB0pISDAOV1ZXVxu35wIAoDsL+MGrFRUV6tOnjyQpJSVFH330kamFAQDQFQIKOkkd7jspqdNH7wAA0F0EFHS//OUvtXfvXuMH26+//rpiY2NNLQwAgK4Q0LTM7XbrwQcflMfjUXR0tBwOh958802zawMA4JJdMOh8Pp/WrVund999VydOnFB7e7siIyMvR20AAFyyCx66DA0NVWlpqSTp2muvJeQAAFeUgM7RjRs3Tn/605/02Wef6dChQ8YCAEB3F9A5ur/97W+S1OEmyyEhIdq/f785VQEA0EU6DbqtW7cqLS3NtAevAgBgtk4PXS5cuNB4/etf/9r0YgAA6GqdBp3f7zdenz592vRiAADoap0G3Y+f6P1Tnu5dUVEhh8Mhu90ul8sln8/Xob2mpkZOp9NY+vTpY8wiS0pKFB0dbbTl5+df9P4BAOj0HF1NTY3Cw8Ml/fCU8TOv/X6/QkJC1Nraet6x7e3tcrlcKi8vV1JSku69916VlpbqgQceMPo4nU7V1NQY64MHD1ZOTo6xnpmZqaKiop/0wQAAkC4wo2tvb1dra6taW1s7vD59+nSnISdJlZWVGjBggJKSkiRJeXl5KisrO2//jz/+WH6/X7fddttP+BgAAJxbwDd1vlher7fDjaBjY2PV1NR03v6lpaXGE8zPePvttzV8+HBNmDBBlZWVZpUKALAw0x5B8OMLWS6kra1Na9as0Y4dO4xtd999t6ZNm6ZevXpp69atyszM1L59+xQREdFhrNvtltvtNtabm5svvXgAgGWYNqOLiYnpMINrbGyUzWY7Z9/NmzcrPj5edrvd2Na3b1/16tVLkpSWliabzaa6urqzxubn58vj8RhLVFRUF38SAMCVzLSgS01NldfrlcfjkSQVFxcrKyvrnH1LS0uVm5vbYduPbzG2Z88eNTQ0KD4+3qxyAQAWZVrQhYaGqqioSNnZ2UpISFBERIRyc3NVXl4ul8tl9Dt+/Lg2bdqkadOmdRj/0ksvyeFwyOl0avbs2SopKWG2BgC4aKY+Jjw9Pd2Y0Z2RkZGhjIwMYz0iIkLffvvtWWOXLl2qpUuXmlkeAOBnwLQZHQAA3QFBBwCwNIIOAGBpBB0AwNIIOgCApRF0AABLI+gAAJZG0AEALI2gAwBYGkEHALA0gg4AYGkEHQDA0gg6AIClEXQAAEsj6AAAlmZ60FVUVMjhcMhut8vlcsnn853VJyQkRE6n01i++eYbSVJbW5vmzJkju90uh8Ohbdu2mV0uAMBiTA269vZ2uVwurV27VvX19WppaVFpaelZ/UJDQ1VTU2Ms0dHRkqSSkhKdOnVK9fX1Wr16tfLy8uT3+80sGQBgMaYGXWVlpQYMGKCkpCRJUl5ensrKygIeX1ZWJpfLJUlKTk5WdHS0qqurTakVAGBNpgad1+tVTEyMsR4bG6umpqaz+rW3t+vmm2/WyJEjtWzZsoseDwDA+YSZ+eaBHmY8cOCAYmJi9M0332jq1Knq37+/7rvvvoDGu91uud1uY725ufkn1wsAsB5TZ3QxMTEdZmCNjY2y2Wzn7CdJ0dHRmjlzpnbu3Bnw+Pz8fHk8HmOJiooy46MAAK5QpgZdamqqvF6vPB6PJKm4uFhZWVkd+jQ3N+vkyZOSpJMnT6q8vFzJycmSpKysLBUVFUmSamtrdeTIEY0YMcLMkgEAFmNq0IWGhqqoqEjZ2dlKSEhQRESEcnNzVV5eblxksm/fPt18880aPny4Ro4cqWHDhikvL0+SNHv2bPXo0UN2u13Tp09XcXGxQkJCzCwZAGAxpp6jk6T09HRjRndGRkaGMjIyJEm33nqrdu/efc6xPXr00BtvvGF2iQAAC+POKAAASyPoAACWRtABACyNoAMAWBpBBwCwNIIOAGBpBB0AwNIIOgCApRF0AABLI+gAAJZG0AEALI2gAwBYGkEHALA0gg4AYGkEHQDA0gg6AIClmRp0FRUVcjgcstvtcrlc8vl8Hdpramo0evRoORwO3XTTTVqxYoXRVlJSoujoaDmdTjmdTuXn55tZKgDAokwLuvb2drlcLq1du1b19fVqaWlRaWlphz7XXHONVq5cqT179mjnzp168cUXVVNTY7RnZmaqpqZGNTU1crvdZpUKALAw04KusrJSAwYMUFJSkiQpLy9PZWVlHfokJibqxhtvlCT17t1bQ4cOVVNTk1klAQB+hkwLOq/Xq5iYGGM9Nja20xD7/PPPVVVVpdGjRxvb3n77bQ0fPlwTJkxQZWWlWaUCACwszKw39vv9Aff99ttvNXXqVP35z39Wnz59JEl33323pk2bpl69emnr1q3KzMzUvn37FBER0WGs2+3ucFizubm5az4AAMASTJvRxcTEdJjBNTY2ymazndXvv//9ryZPnqyHHnpIOTk5xva+ffuqV69ekqS0tDTZbDbV1dWdNT4/P18ej8dYoqKiTPg0AIArlWlBl5qaKq/XK4/HI0kqLi5WVlZWhz6nT59WVlaWxo8frz/84Q8d2g4dOmS83rNnjxoaGhQfH29WuQAAizIt6EJDQ1VUVKTs7GwlJCQoIiJCubm5Ki8vl8vlkiStWbNGW7Zs0fr1642fEbz11luSpJdeekkOh0NOp1OzZ89WSUkJszUAwEUz7RydJKWnpxszujMyMjKUkZEhSZo5c6Zmzpx5zrFLly7V0qVLzSwPAPAzwJ1RAACWRtABACyNoAMAWBpBBwCwNIIOAGBpBB0AwNIIOgCApRF0AABLI+gAAJZG0AEALI2gAwBYGkEHALA0gg4AYGkEHQDA0gg6AIClEXQAAEszPegqKirkcDhkt9vlcrnk8/nO6rNmzRolJiYqISFBixcvNra3tLRoypQpGjx4sFJTU7V3716zywUAWIypQdfe3i6Xy6W1a9eqvr5eLS0tKi0t7dDnu+++06OPPqqtW7eqrq5O77//vrZu3SpJevbZZzVs2DB99tlnWrJkiebPn29muQAACzI16CorKzVgwAAlJSVJkvLy8lRWVtahzz//+U/dfvvt6t+/v8LCwvTAAw8YfcrKyuRyuSRJkyZN0n/+8x998803ZpYMALAYU4PO6/UqJibGWI+NjVVTU1PAff63zWazyev1mlkyAMBiwsx8c7/f3yV9OuN2u+V2u431/fv3GzPIS3HNJb/DxWtublZUVNRl3WdS+f/7SeP4fi6M76j7Ccb3cyn4NxS4ziZBpgZdTExMhxlcY2OjbDbbWX1qa2vP2cdms6mpqUnx8fGSfvggAwcO7DA+Pz9f+fn5Zn2EyyopKUkejyfYZXRbfD8XxnfUOb6fC7Pid2TqocvU1FR5vV7jSysuLlZWVlaHPhMnTtT777+vw4cPq62tTW+88YbRJysrS0VFRZKkjRs3ym63q2/fvmaWDACwGFODLjQ0VEVFRcrOzlZCQoIiIiKUm5ur8vJy4yKT6667Ts8995zGjh2rG2+8UWlpabrjjjskSY899phqa2s1ePBgPf7443r55ZfNLBcAYEGmHrqUpPT09LOmwRkZGcrIyDDWp0+frunTp5819rrrrtM//vEPs0vsNqxyCNYsfD8XxnfUOb6fC7PidxTiv9SrQQAA6Ma4BRgAwNIIuiArKCiQzWZTWJjpR5GvWE1NTbrzzjs1dOhQORwOFRYWBrukbmfChAlyOp0aNmyYsrOz1dLSEuySuqX8/Hz+r51HXFycHA6HnE6nnE6ndu/eHeySugxBF2Q5OTmqqqoKdhndWlhYmJ555hnt3btX1dXV2r59uzZs2BDssrqVtWvXqqamRrt375bNZtOyZcuCXVK3s23bNh0/fjzYZXRrmzdvVk1NjWpqajRs2LBgl9NlCLogGzNmjPr16xfsMrq1/v37KzU1VZIUHh6ulJQUNTY2Brmq7uW6666T9MP9ZU+ePKmQkJAgV9S9nDp1SosWLdLzzz8f7FIQBAQdrihHjx7V+vXrNX78+GCX0u1kZmbqhhtuUF1dnR555JFgl9OtLFmyRHl5ebr++uuDXUq3NmXKFDmdTi1evFinT58OdjldhqDDFaO1tVXZ2dkqKCjQkCFDgl1Ot7Nu3TodOnRINptNb731VrDL6TZqa2v18ccfa86cOcEupVvbtm2bqqurtWPHDtXV1Vlq9kvQ4Yrg8/k0Y8YMOZ1OZiudCA8P1/Tp07Vu3bpgl9Jt7NixQx6PR4MGDVJcXJx8Pp/i4uK4YOd/nLmB/rXXXiuXy6WdO3cGuaKuQ9DhijB37lxFRkbqhRdeCHYp3c6xY8d0+PBhST+coysvL5fD4QhyVd3H73//ex06dEgNDQ1qaGhQaGioGhoa1Lt372CX1m2cOHHCCH6fz6eysjIlJycHuaquQ9AF2bx582Sz2eTz+WSz2Sx5V4JLtWPHDq1cuVJVVVVKSUmR0+nUihUrgl1Wt3Hs2DFlZGQoOTlZycnJamtr0+OPPx7ssnAF+eqrrzR27Fjj35Df79fixYuDXVaX4c4oAABLY0YHALA0gg4AYGkEHQDA0gg6AIClEXQAAEsj6AAAlkbQAUFy/PhxzZs3T/Hx8bLb7brrrru0b9++Lt/Pt99+e9bvDs/cJFv64T6QgJXxOzogSGbMmKFevXrp1VdfVWhoqF5//XU98cQTqqurU69evbpsPw0NDRo3bpzq6+vP2R4WFqa2trYu2x/Q3TCjA4Jg//79evvtt7V8+XKFhoZKkubMmaNf/epXKi0tVVxcnLxeryTJ6/UqLi5OkvT9999r/PjxGjlypBwOh5577jnjPW+//XY99thjGjVqlOLj4437XS5cuFBNTU1yOp26//77Jcl4+OjChQvl8/nkdDo1btw4lZaW6sEHHzTec+fOnUpLSzP9+wDMxKN2gSDYs2eP7Hb7WfdbTE1N1Z49e847Ljw8XGvXrtUvfvELtba2avTo0ZoyZYrxNIeWlhZ99NFHqqqq0n333afMzEwtX75cu3fvVk1NzVnvt3z5cr344otG28mTJ7V48WIdO3ZMkZGReu211/TQQw912ecGgoEZHdDNXHXV+f9b+v1+LVmyRMOHD1dqaqo+//xzffrpp0Z7Tk6OJGnkyJE6cODARe/76quv1j333KNVq1bp2LFj2rJli7Kzsy/+QwDdCEEHBIHD4VB9fb2OHTvWYfuuXbt06623KiwsTO3t7ZJ+mGWd8eabb+rzzz/XJ598otraWt1xxx0d2nv27ClJCgkJMcZfrHnz5qmoqEirVq1SZmamrr766p/0PkB3QdABQRAfH6/Jkyfr4Ycfls/nkyT95S9/kc/n09SpUzVo0CDt2rVLkjo8RPW7775T37591bNnT33xxRfasmXLBfcVGRl5VqD+2DXXXKMTJ04Y6zfeeKMiIiK0ZMkSuVyun/oRgW6DoAOC5LXXXpMkDR48WAMHDtTy5cu1ZcsW9ejRQ08++aQKCws1cuTIDiGUm5urzz77TA6HQwsWLAjoQpHo6GjdddddcjgcxsUoP7ZgwQKNHDlS48aNM7bdf//9GjhwoIYPH94FnxQILn5eAHQDX375pSZOnKi5c+dq/vz5wS5Hc+bM0W9+85sOV2ACVyqCDoDh+++/V0pKimw2mzZu3Kjw8PBglwRcMoIOAGBpnKMDAFgaQQcAsDSCDgBgaQQdAMDSCDoAgKURdAAAS/v/xMBZkZFb0FsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hist.bar()\n", "decorate(xlabel=\"Quantity\", ylabel=\"Frequency\")" ] }, { "cell_type": "markdown", "id": "9b20fe7c", "metadata": {}, "source": [ "Because a `Hist` is a Pandas `Series`, we can use the bracket operator to look up a quantity and get its frequency. " ] }, { "cell_type": "code", "execution_count": 8, "id": "dabde3b8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hist[2.0]" ] }, { "cell_type": "markdown", "id": "3af2a2e9", "metadata": {}, "source": [ "But unlike a Pandas `Series`, we can also call a `Hist` object like a function to look up a quantity." ] }, { "cell_type": "code", "execution_count": 9, "id": "b788c0ba", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hist(2.0)" ] }, { "cell_type": "markdown", "id": "fd2ce71f", "metadata": {}, "source": [ "If we look up a quantity that does not appear in the `Hist`, the function syntax returns `0`." ] }, { "cell_type": "code", "execution_count": 10, "id": "ef936c4c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hist(4.0)" ] }, { "cell_type": "markdown", "id": "4f6c7454", "metadata": {}, "source": [ "A `Hist` object has an attribute called `qs` that returns an array of quantities." ] }, { "cell_type": "code", "execution_count": 11, "id": "800a81bc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1., 2., 3., 5.])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hist.qs" ] }, { "cell_type": "markdown", "id": "6ea6cf48", "metadata": {}, "source": [ "And an attribute called `ps` that returns an array of frequencies." ] }, { "cell_type": "code", "execution_count": 12, "id": "51efc825", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 2, 1, 1])" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hist.ps" ] }, { "cell_type": "markdown", "id": "7cef9cc4", "metadata": {}, "source": [ "We can use `items` to loop through quantity-frequency pairs:" ] }, { "cell_type": "code", "execution_count": 13, "id": "631f0d3e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0 1\n", "2.0 2\n", "3.0 1\n", "5.0 1\n" ] } ], "source": [ "for x, freq in hist.items():\n", " print(x, freq)" ] }, { "cell_type": "markdown", "id": "ead5ffcd", "metadata": {}, "source": [ "We'll see more methods as we go along." ] }, { "cell_type": "markdown", "id": "f3aa1263", "metadata": {}, "source": [ "## NSFG Distributions\n", "\n", "When you start working with a new dataset, I suggest you explore the variables you are planning to use one at a time, and a good way to start is by looking at histograms.\n", "\n", "As an example, let's look at the NSFG data.\n", "The code we used to clean and validate this data is in a module called `nsfg.py`\n", "\n", "Instructions for downloading the data are in the notebook for this chapter." ] }, { "cell_type": "markdown", "id": "e6eac5b4", "metadata": { "tags": [ "remove-print" ] }, "source": [ "The following cells download the data files and install `statadict`, which we need to read the data." ] }, { "cell_type": "code", "execution_count": 14, "id": "c77ab1f0", "metadata": { "tags": [ "remove-print" ] }, "outputs": [], "source": [ "try:\n", " import statadict\n", "except ImportError:\n", " !pip install statadict" ] }, { "cell_type": "code", "execution_count": 15, "id": "2bbaa48e", "metadata": { "tags": [ "remove-print" ] }, "outputs": [], "source": [ "download(\"https://github.com/AllenDowney/ThinkStats/raw/v3/nb/nsfg.py\")\n", "download(\"https://github.com/AllenDowney/ThinkStats/raw/v3/data/2002FemPreg.dct\")\n", "download(\"https://github.com/AllenDowney/ThinkStats/raw/v3/data/2002FemPreg.dat.gz\")" ] }, { "cell_type": "markdown", "id": "339cae3d", "metadata": {}, "source": [ "We can import it and read the pregnancy file like this." ] }, { "cell_type": "code", "execution_count": 16, "id": "d3fe7a84", "metadata": {}, "outputs": [], "source": [ "from nsfg import read_fem_preg\n", "\n", "preg = read_fem_preg()" ] }, { "cell_type": "markdown", "id": "5e3f1a6a", "metadata": {}, "source": [ "For the examples in this chapter, we'll focus on pregnancies that ended in live birth.\n", "We can use the `query` method to select the rows where `outcome` is 1." ] }, { "cell_type": "code", "execution_count": 17, "id": "32e122bf", "metadata": {}, "outputs": [], "source": [ "live = preg.query(\"outcome == 1\")" ] }, { "cell_type": "markdown", "id": "cd02a26b", "metadata": {}, "source": [ "We can use `Hist.from_seq` to count the number of times each quantity appears in `birthwgt_lb`, which is the pounds part of the birth weights." ] }, { "cell_type": "code", "execution_count": 18, "id": "48342667", "metadata": {}, "outputs": [], "source": [ "hist = Hist.from_seq(live[\"birthwgt_lb\"], name=\"birthwgt_lb\")" ] }, { "cell_type": "markdown", "id": "1b79be72", "metadata": {}, "source": [ "Here's what the distribution looks like." ] }, { "cell_type": "code", "execution_count": 19, "id": "114aec3c", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAAiZ0lEQVR4nO3de3SU9YH/8XcuXDQkFLMikBka02SaZCBMgKo0AbJigluUSxqrh1USLkVsPEUKuwR0y5bSRVGwVAOnrUBQ2OouKWB1rYAFNWCtYHK4BJA9iWQSYyoSLsmWSybf3x/+mBrJZYAMk3n8vM7JOcwz833mM+Ekn3yfa4gxxiAiImJRoYEOICIi4k8qOhERsTQVnYiIWJqKTkRELE1FJyIilqaiExERS1PRiYiIpYUHOoA/RUVFYbPZAh1DRET8oLq6mjNnznT4OksXnc1mo7y8PNAxRETED5KTk316nTZdioiIpanoRETE0iy96VJEpLPp8sDXX0hIyDWNV9GJiPjg4sWLuN1uzp8/H+goXzs9evTAbrfTrVu3qxqvohMR8YHb7SYyMpLY2NhrnmGI74wxfP7557jdbuLi4q5qHSo6EZEOGGM4f/48sbGxhIbq0IbrKSQkhOjoaE6cOIEx5qr+yND/mIiIjzSTC4wuv48uKyuLv/71r3g8Hr797W+zdu1aoqKiKCgoYNOmTYSGhrJ06VK+//3vA3Dw4EFyc3M5c+YMTqeTDRs20KtXL4A2x4gEq9iC1ztlPR8/Oa5T1iNiRX4vuv/+7/+md+/eADz22GOsWLGC9PR09uzZw9GjR/n0008ZMWIEY8eOpVevXsyaNYulS5eSlZXFv/7rv7J8+XIWLVrEjh072hwjInK9ddYfKV/myx8s4eHhNDU1Xbb81VdfpaysjJ/+9Ketjlu8eHGL52JjYykpKenUq0edOnWKF198kR//+Mftvi4jI4MlS5aQnp7e4t/+4vdNl5dKrrm5mXPnzhESEkJxcTF5eXmEhYURExNDWloa27Zto66ujqqqKrKysgCYPn06xcXFAG2OERERGD9+fKsld6kUFy9e7PcMp06d4le/+pXf3+dKXZd9dJMmTaJv374cPXqUuXPnUl1djd1u9z4/cOBA3G53m8uBdp8TEfk6WbhwIYMHD2bo0KEcOHAAgKKiImbMmOH99z333MPYsWMZNGgQc+bMwePx4HK5uOuuu7zr+c1vfsPw4cNxOBzs2bMHgIkTJ/L22297/33fffcBsGvXLnJycgAoKysjNTWVlJQU/u3f/o3w8C82Ds6ZMwe3243L5WLKlCk+f57i4mKGDh1KQkICL7/88jV+dy53XY663Lx5MxcuXGD69Ols2rSpzRMu2zsR05eTNAsLCyksLPQ+rq+vv/KwIiJdmMfjwWazceDAAbZu3crUqVPZu3fvZa97//33OXjwILfccgsAzz33HGVlZS1ec+ONN7J37142bdrEokWL2L59O6NHj+btt99m1KhRVFZWEhYWBnxRdBkZGQDk5ubyzDPPkJmZyfPPP+9d37PPPsuBAwcue5+OfPLJJ+zbt4/q6mq+853vcOedd9K3b98rWkd7rttRl927d+eBBx5g8+bN2O32FrOxqqoqbDYbNput1eVAm2O+LD8/n/Lycu9Xnz59/PypRESuv9zcXAAmTJhARUUFjY2Nl73mrrvu8pZcWy7N1r7zne9QWVkJ4C26AwcOMHjwYBITEzl8+DC7du1i9OjRnD59mtraWjIzMwF46KGHrvnzTJkyhZCQEOx2OyNGjOCDDz645nV+mV+L7uzZs9TW1gJf7KN79dVXcTqdZGdnU1RUhMfjoaamhpKSErKysujXrx92u927723NmjVkZ2cDtDlGREQuFxER0eFrevToAUBYWJh3X57L5eLw4cNs376djIwMRo8ezZtvvsn//u//MmjQoMvW0RmnXPj7tA2/F9348eNJSUkhJSWFpqYmnnjiCTIzM7njjjtwOBxkZGSwYsUKIiMjAVi9ejXz588nISGBI0eOMG/ePIB2x4iIfJ289NJLALz22mvExcX5VGo33nhjqzO/rwoNDWXYsGGsXLmSjIwMMjIyePbZZ7ntttsICQmhd+/e9O/fn7feeguADRs2eMdGRkZy9uzZq/o8xhhqamr485//zG233XbF62iPX/fRDRgwoM0p6LJly1i2bNlly1NSUigtLb2iMSIi11ugzl0MCwvD7XaTkpJCeHg4RUVFPo179NFHGTZsGDabjR07drT72tGjR1NWVkZ8fDwAFy5cYPTo0d7n161bx7Rp0zDGcPfdd3uPro+Ojmbs2LE4nU6GDRvGiy++6FO2fv36MWzYMBoaGlixYgU333yzT+N8FWIsfCnu5ORk3XhVujSdMB4cjDEcOXKExMREXR0FaGho8J7DvHHjRjZs2MAbb7zht/dr6/vv6+94XetSRESuyI4dO1i0aBHNzc306dOHF154IdCR2qWiExGRKzJx4kQmTpzY7mv++te/tnrA4HPPPcfIkSP9lKx1KjoREel0ffv2veLz6fxFdy8QEfGRhQ9p6NKu9fuuGZ2ISAdCQkLo0aMHn3/+OdHR0Tog5Tq6dOPVHj16XPX3XUUnIuKDS1dnOnHiRKCjfO306NGjxbWOr5SKTkTEB926dSMuLk6bLwOgy994VUTESrTZMvjoYBQREbE0FZ2IiFiaik5ERCxNRSciIpamohMREUtT0YmIiKWp6ERExNJUdCIiYmkqOhERsTQVnYiIWJqKTkRELE1FJyIilqaiExERS1PRiYiIpfmt6NxuN2PGjCEpKQmn08mCBQsA2LVrF5GRkbhcLlwuF5MmTfKOqampYdSoUTgcDjIyMqitrfU+t3LlShISEoiPj6ewsNBfsUVExGL8VnTh4eE89dRTHD58mNLSUkpKSti6dSsAt99+O2VlZZSVlbF582bvmPnz5/Pggw/y0Ucf8YMf/ICFCxcCcOzYMVatWkVpaSmlpaX88pe/pLKy0l/RRUTEQvxWdP3792f48OEAdO/endTUVKqqqtod89prrzFlyhQAcnNzvcX4+9//nvvvv59evXoRGRlJTk5Oi4IUERFpy3XZR3fy5Em2bNlCZmYmAPv27SM1NZVRo0bx5ptvAvD5558TERFBz549AYiIiKBbt26cPn2a6upq7Ha7d30DBw7E7XZfj+giIhLkwv39BhcuXCAnJ4fZs2eTmJjIgAEDOH78OFFRURw6dIi7776bd955h8jIyDbXYYzx6b0KCwtb7L+rr6+/5vwiIhLc/Dqj83g8TJ48GZfLxdy5cwGIiooiKioKAKfTSVpaGh9++CHR0dE0NjZy7tw5ABobG7lw4QK9e/fGbre3mMFVVVVhs9kue7/8/HzKy8u9X3369PHnxxMRkSDg16KbOXMmkZGRLF++3LustrbWO0Orqanhvffew+l0EhISwrhx43jxxRcBWL9+PePHjwdg0qRJvPLKKzQ0NHD27Fk2bdrU4mhNERGRtvht0+Xu3btZu3YtgwYNIjU1FYBp06YRGhrK6tWr6datGwBLliwhMTERgCeffJLJkyfz9NNP079/f373u98B4HA4mDVrFi6XC2MMjz32GHFxcf6KLiIiFhJifN0BFoSSk5MpLy8PdAyRNsUWvN4p6/n4yXGdsh6RYOLr73hdGUVERCxNRSciIpamohMREUtT0YmIiKWp6ERExNJUdCIiYmkqOhERsTQVnYiIWJqKTkRELE1FJyIilqaiExERS1PRiYiIpanoRETE0vx+h3ERK9BdBkSCl2Z0IiJiaSo6ERGxNBWdiIhYmopOREQsTUUnIiKWpqITERFLU9GJiIilqehERMTSVHQiImJpKjoREbE0vxad2+1mzJgxJCUl4XQ6WbBggfe5goIC4uPjcTgcFBcXe5cfPHiQYcOGkZCQwMSJE2loaOhwjIiISFv8WnTh4eE89dRTHD58mNLSUkpKSti6dSs7duxgz549HD16lJ07dzJnzhxvoc2aNYulS5dy7NgxHA4Hy5cvB2h3jIiISFv8WnT9+/dn+PDhAHTv3p3U1FSqqqooLi4mLy+PsLAwYmJiSEtLY9u2bdTV1VFVVUVWVhYA06dP987c2hojIiLSnuu2j+7kyZNs2bKFzMxMqqursdvt3ucGDhyI2+1ucznQ7nMiIiJtuS636blw4QI5OTnMnj2bxMREjDGtvq6t5R09d0lhYSGFhYXex/X19VceVkRELMXvMzqPx8PkyZNxuVzMnTsXALvd3mI2VlVVhc1mw2aztbq8vTFflp+fT3l5uferT58+/vxoIiISBHwquoSEBP7jP/6D2traK36DmTNnEhkZ6T2oBCA7O5uioiI8Hg81NTWUlJSQlZVFv379sNvt3n1va9asITs7u90xIiIi7fGp6Hbu3ElTUxMjR45kwoQJ/OEPf6C5ubnDcbt372bt2rXs3buX1NRUXC4Xv/rVr8jMzOSOO+7A4XCQkZHBihUriIyMBGD16tXMnz+fhIQEjhw5wrx58wDaHSMiItKWEOPLzq//zxjDG2+8wcyZMwGYMWMGc+bMoXfv3n4LeC2Sk5MpLy8PdAyxgNiC1ztlPR8/Oe66rFfk68DX3/E+76OrrKzkiSee4Mc//jFZWVls2LCB0NBQxowZc01BRURE/Mmnoy7HjBnDiRMn+OEPf8i+ffu8M7iMjAydyyYiIl2aT0W3ePFi0tLSWn2upKSkUwOJyLXrjE2i2hwqVuHTpsu//OUvLc5JO3nyJCtXrvRbKBERkc7iU9GtX7++xTlpN910E0VFRf7KJCIi0ml8KrqvnkpgjOHixYt+CSQiItKZfCq6tLQ0Hn74YQ4dOsShQ4d45JFHSE9P93c2ERGRa+ZT0T377LPcfPPN5OXlkZubyz/8wz/w7LPP+jubiIjINfPpqMuePXuyZMkSlixZ4u88IiIincqnojtx4gS//e1vqayspKmpybt87dq1fgsmIiLSGXwquokTJ5Kamkp6ejphYWH+ziQiItJpfCq6M2fO8Nxzz/k7i4iISKfz6WCU0aNH8/777/s7i4iISKfzaUb3P//zP6xatQqbzUaPHj0wxhASEsJHH33k73wiIiLXxKei+9Of/uTvHCIiIn7h06bLb37zm/ztb3+jrKyMb37zm0RHR+umpyIiEhR8KrpVq1bx0EMPMXfuXAA+/fRTcnJy/BpMRESkM/hUdL/+9a/ZvXu3dxYXHx/PZ5995tdgIiIincGnorvhhhvo3r279/FXL/IsIiLSVflUdKmpqbzwwgs0NTWxf/9+ZsyYwT/+4z/6O5uIiMg18/mizm63m549ezJt2jRiYmJ4+umn/Z1NRETkmvl8Ueef/exn/OxnP/N3HhERkU7lU9EtXry41eU//elPOzWMiIhIZ/Np02VYWJj36+LFi2zdupXKysoOx82ePRubzUZ4+N/7dNeuXURGRuJyuXC5XEyaNMn7XE1NDaNGjcLhcJCRkUFtba33uZUrV5KQkEB8fDyFhYVX8hlFRORrzKcZ3eOPP97i8YIFC7j33ns7HHffffexYMECbDZbi+W33347O3bsuOz18+fP58EHH2TmzJmsWrWKhQsXsm7dOo4dO8aqVasoLS3FGMPQoUP53ve+x6233upLfBER+RrzaUb3VWFhYVRVVXX4uvT0dPr16+fzel977TWmTJkCQG5uLlu3bgXg97//Pffffz+9evUiMjKSnJwcNm/efDXRRUTka8anGV1mZiYhISHAF+fQHTlyhLy8vKt+03379pGamkpkZCSPP/44Y8eO5fPPPyciIoKePXsCEBERQbdu3Th9+jTV1dWkpKR4xw8cOFAXlBYREZ/4VHRPPPHE3weEhxMbG0tMTMxVveHQoUM5fvw4UVFRHDp0iLvvvpt33nmn3WtnGmN8WndhYWGL/Xf19fVXlVFERKzDp6IbPXp0p71hVFSU999Op5O0tDQ+/PBDsrOzaWxs5Ny5c/Ts2ZPGxkYuXLhA7969sdvtuN1u77iqqqrL9vsB5Ofnk5+f732cnJzcablFRCQ4+bSPrlu3bnTv3v2yr0vLr0Rtba13hlZTU8N7772H0+kkJCSEcePG8eKLLwKwfv16xo8fD8CkSZN45ZVXaGho4OzZs2zatKnF0ZoiIiJt8fmoy5tuuom8vDyMMbz00kucPHmyw/PoHn74YV5//XU8Hg82m40JEyaQlJTE6tWr6datGwBLliwhMTERgCeffJLJkyfz9NNP079/f373u98B4HA4mDVrFi6XC2MMjz32GHFxcdfyuUVE5GsixPiwA8zlclFWVtbhsq4mOTmZ8vLyQMcQC4gteL1T1vPxk+OCZr1fXadIV+Pr73ifNl2Ghoa2OO/trbfeIjT0qs5MEBERua582nS5du1a8vLy+PTTTwEYMGAA69at82swERGRzuBT0V3aTHnmzBmg5ZGTIiIiXZlP2x/Pnj3LggULeOSRR4iKiuLo0aO6MomIiAQFn4pu2rRpREdHs3//fuCLK5Polj0iIhIMfCq6iooK5s2b570LwQ033OC9JJiIiEhX5vMJ4xcvXvSWW01NjY66FBGRoOBTW82bN4977rmHuro6fvKTn5Cent7i+pciIiJdVYdHXRpjGDFiBCkpKWzfvh1jDG+88Yb3aiYiIiJdWYdFFxISwt13382BAwdwOBzXI5OIiEin8WnTZWJiou7/JiIiQcmnE8ZramoYMmQIQ4cOJSIiwrt827ZtfgsmIiLSGdotun/6p3/ijTfeIDQ0lD/+8Y/XK5OIiEinabfojh8/TkVFBadPn8bhcPh8p28REZGuot2i+9GPfsS4ceOoqKggLS2tRdGFhIRQUVHh94AiIiLXot2DUR599FEOHz7MP//zP1NRUUFlZaX3SyUnIiLBwKejLteuXevvHCIiIn6h63iJiIilqehERMTSVHQiImJpKjoREbE0FZ2IiFiaik5ERCxNRSciIpbm16KbPXs2NpuN8PCWF2ApKCggPj4eh8NBcXGxd/nBgwcZNmwYCQkJTJw4kYaGhg7HiIiItMevRXffffexd+/eFst27NjBnj17OHr0KDt37mTOnDneQps1axZLly7l2LFjOBwOli9f3uEYERGR9vi16NLT0+nXr1+LZcXFxeTl5REWFkZMTAxpaWls27aNuro6qqqqyMrKAmD69OnemVtbY0RERDpy3ffRVVdXY7fbvY8HDhyI2+1uc3l7Y0RERDri041XO1Nbt/pp7xZAvt4eqLCwkMLCQu/j+vr6KwsnIiKWc91ndHa7vcVsrKqqCpvNhs1ma3V5e2O+Kj8/n/Lycu9Xnz59/PhJREQkGFz3osvOzqaoqAiPx0NNTQ0lJSVkZWXRr18/7Ha7d9/bmjVryM7ObneMiIhIR/y66fLhhx/m9ddfx+PxYLPZmDBhAoWFhWzfvh2Hw0FoaCgrVqwgMjISgNWrV5Obm0t+fj5JSUls3LgRgMzMzDbHiIiItCfE+LoDLAglJydTXl4e6BhiAbEFr3fKej5+clzQrPer6xTpanz9Ha8ro4iIiKWp6ERExNJUdCIiYmkqOhERsTQVnYiIWJqKTkRELE1FJyIilqaiExERS1PRiYiIpanoRETE0lR0IiJiaSo6ERGxNBWdiIhYmopOREQsTUUnIiKW5tcbr4oEgu7FJiJfphmdiIhYmopOREQsTUUnIiKWpn10IuIz7f+UYKQZnYiIWJqKTkRELE1FJyIilhawoouNjcXpdOJyuXC5XBw4cACAgoIC4uPjcTgcFBcXe19/8OBBhg0bRkJCAhMnTqShoSFQ0UVEJIgEdEb35ptvUlZWRllZGYMHD2bHjh3s2bOHo0ePsnPnTubMmeMttFmzZrF06VKOHTuGw+Fg+fLlgYwuIiJBokttuiwuLiYvL4+wsDBiYmJIS0tj27Zt1NXVUVVVRVZWFgDTp09vMdsTERFpS0CL7t5778XlcvH4449z8eJFqqursdvt3ucHDhyI2+1uc7mIiEhHAnYe3bvvvovdbqexsZHc3FyeeeYZjDGtvrat5V9VWFhIYWGh93F9fX2nZBURkeAVsBndpRlaREQEM2bMYM+ePdjt9hYztaqqKmw2GzabrdXlX5Wfn095ebn3q0+fPv7/ICIi0qUFpOgaGxs5c+YMAB6Ph+LiYlJSUsjOzqaoqAiPx0NNTQ0lJSVkZWXRr18/7HY727ZtA2DNmjVkZ2cHIrqIiASZgGy6rKurIzs7m+bmZjweDyNGjODxxx/nxhtvZPv27TgcDkJDQ1mxYgWRkZEArF69mtzcXPLz80lKSmLjxo2BiC4iIkEmIEUXFxdHWVlZq88tW7aMZcuWXbY8JSWF0tJSPycTERGr6VKnF4iIiHQ2FZ2IiFiaik5ERCxNRSciIpamohMREUtT0YmIiKWp6ERExNJUdCIiYmkqOhERsTQVnYiIWJqKTkRELE1FJyIilqaiExERSwvYHcZFYgtev+Z1fPzkuE5IIiJWphmdiIhYmopOREQsTUUnIiKWpqITERFLU9GJiIil6ahLEQmozjj6FnQErrRNMzoREbE0FZ2IiFiaNl1Kh7RpSUSCmWZ0IiJiaUFVdLt27cLpdBIfH8+MGTPweDyBjiQiIl1c0Gy6bG5uZsaMGbz66qskJyfzgx/8gA0bNpCbmxvoaFfFX9d51PUjRURaCpqi++CDDxgwYADJyckATJ8+ncLCwqAtOhHxL/3RJ5cETdFVV1djt9u9jwcOHIjb7Q5gIhH5OlKBBp8QY4wJdAhfbNq0ic2bN7Nx40YADh8+zOTJkyktLfW+prCwkMLCQu/jiooK4uLi/J6tvr6ePn36+P19OkMwZYXgyhtMWSG48iqr/wRT3q9mra6u5syZMx2OC5oZnd1ubzGDq6qqwmaztXhNfn4++fn51zsaycnJlJeXX/f3vRrBlBWCK28wZYXgyqus/hNMea82a9AcdTl8+HCqq6u9H3LNmjVkZ2cHOJWIiHR1QVN0YWFhvPDCC+Tk5PCtb32LXr168dBDDwU6loiIdHFBs+kS4M477+ySU+xAbC69WsGUFYIrbzBlheDKq6z+E0x5rzZr0ByMIiIicjWCZtOliIjI1VDRXYNguiSZ2+1mzJgxJCUl4XQ6WbBgQaAj+SQ/P5/w8K6/hb2xsZHc3Fy+/e1vk5iYyK9//etAR2rThg0bSElJweVyMXLkSI4ePRroSC3Mnj0bm8122f97QUEB8fHxOBwOiouLA5Supdaybty4kSFDhpCSksLw4cP505/+FMCEf9fW9xXg1KlTxMTEMGPGjAAka11bed9//31uu+02nE4nTqeTTz75pOOVGbkqHo/HfOtb3zKHDh0yxhhz3333maKiogCnatsnn3xiPvjgA2OMMefPnzfp6elmy5YtAU7VvnfeecdMmTLFhIWFBTpKhx5++GHz1FNPGWOMaW5uNnV1dQFO1LrGxkZz0003mc8++8wYY8zq1atNTk5OgFO19O6775ra2toW/+/bt283I0eONE1NTaa6utrY7XZz9uzZAKb8QmtZd+/ebU6cOGGMMWb//v2mb9++xuPxBCqiV2tZL/nhD39oHnzwQTN9+vQAJGtda3nPnDljHA6HKS8vN8YYc+rUKfN///d/Ha5LM7qr1NolybrKX5mt6d+/P8OHDwege/fupKamUlVVFeBUbTt//jwFBQU888wzgY7SobNnz/Lqq6/yk5/8BICQkBD69u0b4FSta25uxhhDQ0MDAKdPn6Z///4BTtVSeno6/fr1a7GsuLiYvLw8wsLCiImJIS0tjW3btgUo4d+1lvW73/0u0dHRAAwaNIjz58/T2NgYiHgttJYVYOfOnZw/f54xY8YEIFXbWsv7n//5n3zve98jKSkJgN69e3PDDTd0uC4V3VUK5kuSnTx5ki1btpCZmRnoKG1avHgx06dP5+abbw50lA5VVFRwyy238OijjzJ06FAmTZrE8ePHAx2rVb169eL5559n0KBBxMTEsH79en7+858HOlaHgvXn7eWXX2bw4MFERkYGOkqr/va3v7FgwYKg+IMS4MiRI5w/f5677rqL1NRUFi1ahPHheEoV3VXy5ZvbFV24cIGcnBxmz55NYmJioOO0av/+/bz//vtMnTo10FF80tTURFlZGTk5OXz44Yfce++9TJs2LdCxWnXx4kVWrVrFBx98QE1NDTk5OcyfPz/QsToUjD9vpaWlFBQUsHbt2kBHadO///u/M3PmzKD4gxK++Fl799132bRpE++99x5//vOf2bBhQ4fjVHRXyZdLknU1Ho+HyZMn43K5mDt3bqDjtGn37t2Ul5dz6623Ehsbi8fjITY21qdr2gWCzWYjOjqau+66C4AHHniAffv2BThV68rKyjDGeDf9PPDAA+zZsyfAqToWbD9vH330Ed///vd5+eWXSUhICHScNu3Zs4fFixcTGxvLvHnzeOWVV5g5c2agY7XJbreTlZXFN77xDXr27MmECRN8+1nzx07Er4OmpiZz6623tjgYZe3atQFO1b5p06aZvLw809zcHOgoVyQYDkYZNWqU2bdvnzHGmC1btpjvfve7AU7Uuk8++cRER0eb6upqY4wxv/zlL839998f4FSt+/L/+7Zt21ocjGKz2cyZM2cCmK6lL2d1u90mPj7e/PGPfwxgora19fO0bt26LnUwyiVfznvs2DFz++23m3PnzhmPx2Oys7PNb37zmw7XoaK7Bm+99ZZJSkoycXFxZurUqebixYuBjtSmkpISA5hBgwaZIUOGmCFDhpiVK1cGOpZPgqHoDh06ZO644w4zePBgM3LkSO9RYV3Rb3/7W5OUlGRSUlLMmDFjzPHjxwMdqYWZM2eamJgYA5iYmBjzox/9yBhjzL/8y7+YuLg4Ex8fb/7rv/4rwCm/0FrWGTNmmKioKO/P2ZAhQ0xlZWWgo7b5fb2kqxVdW3mff/55k5SUZJxOp3nkkUdMU1NTh+vSlVFERMTStI9OREQsTUUnIiKWpqITERFLU9GJiIilqehERMTSVHQiImJpKjqRr7FguAWSyLVS0YmIiKWp6ES6gPDwcBYuXMjgwYMZOnQoBw4cAL64CPcjjzzCoEGDGDRoEC+88AIAH3/8MfHx8d7xGzZsIC8vD4CioiImTJjAPffcg8PhYMqUKd7XlZWVkZqaSkpKCosWLfIur6ur484778TlcuF0Olm1atV1+NQi14e2W4h0AR6PB5vNxoEDB9i6dStTp05l7969rF69ms8++4z9+/dz6tQphg8fzogRI4iIiGh3fXv37mX//v307t2b4cOHs3v3btLS0sjNzWXZsmWMHTuWlStXel+/ceNGMjMzvXeer6+v9+vnFbmeNKMT6SJyc3MBmDBhAhUVFTQ2NrJr1y6mTp1KaGgoN910E+PHj+ftt9/ucF133nkn0dHRhIeHk5qaSmVlJadPn6a2tpaxY8cCeGeAALfffjvr1q1j4cKFvPPOO/Tp08cvn1EkEFR0Il1YSEhIq4/Dw8Npbm72Lj937lyL1/Xo0cP777CwMJqamtp9n7S0NHbv3k1SUhK/+MUvyM/Pv9boIl2Gik6ki3jppZcAeO2114iLiyMiIoKMjAzWr1+PMYb6+nr+8Ic/MHr0aG655Rbq6+upq6vD4/GwZcuWDtffu3dvBgwYwPbt21u8H3yxz+8b3/gGDz30EIsWLeIvf/mLXz6jSCBoH51IFxAWFobb7SYlJYXw8HCKiooAmDVrFocPH2bw4MEAFBQU4HQ6AfjFL37BiBEj6N+/P6mpqTQ0NHT4PkVFRUydOhWPx0N2drZ3+c6dO1m+fDndunUjNDSUp59+uvM/pEiA6DY9Il1AeHh4h5sXReTqaNOliIhYmmZ0IiJiaZrRiYiIpanoRETE0lR0IiJiaSo6ERGxNBWdiIhYmopOREQs7f8BaENyxxF+ricAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hist.bar()\n", "decorate(xlabel=\"pounds\", ylabel=\"frequency\")" ] }, { "cell_type": "markdown", "id": "e8f04b3a", "metadata": {}, "source": [ "Looking at a distribution like this, the first thing we notice is the shape, which resembles the famous bell curve, more formally called a normal distribution or a Gaussian distribution.\n", "But unlike a normal distribution, it is not symmetric -- the tail extends farther left than right.\n", "A distribution with this shape is said to be **skewed** to the left.\n", "\n", "The other notable feature of the distribution is the **mode**, which is the most common value.\n", "To find the mode, we can use the method `idxmax`, which find the quantity associated with the highest frequency." ] }, { "cell_type": "code", "execution_count": 20, "id": "caba970d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "7.0" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hist.idxmax()" ] }, { "cell_type": "markdown", "id": "6946f411", "metadata": {}, "source": [ "`Hist` provides a method called `mode` that does the same thing." ] }, { "cell_type": "code", "execution_count": 21, "id": "ba3b2280", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "7.0" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hist.mode()" ] }, { "cell_type": "markdown", "id": "f98067b9", "metadata": {}, "source": [ "In this distribution, the mode is at 7 pounds.\n", "\n", "As another example, here's the histogram of `birthwgt_oz`, which is the ounces part of birth weight." ] }, { "cell_type": "code", "execution_count": 22, "id": "70fbced6", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAAgGElEQVR4nO3dfVRUdeI/8DcM+JSIxpoYM4QGE8MzoW4FhCVQrZWIuGtuBYKpOK4saRtW3yy2E0UqWSJZgliwp21lddvKAgrbkJbMmIOKIi3azKC5mQ+IFcrw+f3hz9nQGZlghstc369z5hznch/eAwff3M99chFCCBAREcmUq9QBiIiIHIlFR0REssaiIyIiWWPRERGRrLHoiIhI1lh0REQkayw6IiKSNTepAzjSqFGjoFQqpY5BREQOYDQa0d7e3ut8si46pVKJpqYmqWMQEZEDBAUF2TQfhy6JiEjWWHRERCRrsh66JCKyB94SWFouLi79Wp5FR0Rkxfnz52EwGNDZ2Sl1lKva0KFDoVKp4O7u3qflWXRERFYYDAZ4eHjAz8+v33sV1DdCCHz//fcwGAyYOHFin9bBoiMiskAIgc7OTvj5+cHVlaczSMXFxQVeXl44fvw4hBB9+oODPz0ioivgnpz0eIzOwfxy3rfLeg6/MN0u6yEiol+GRUdE9AvY64/fi2z9I9jNzQ1dXV2XTX/33Xeh0+nw9NNPW1wuNze3x9f8/PxQW1tr17tGnTp1Cm+++SaWLl1qt3XaE4cuiYic2P3332+x5C6WYm5ursMznDp1Cq+88orDt9NXLDoiIifxxBNPIDQ0FDfffDP27NkDACgtLcX8+fPN/7733ntx1113ISQkBNnZ2TCZTIiIiEB8fLx5Pa+//jomTZoEtVqNuro6AEBSUhI+/fRT879nz54NANixYwdSUlIAADqdDpGRkQgLC8P//d//wc3twqBgdnY2DAYDIiIi8PDDD1vNv2/fPsTGxiIsLAy33347mpubAQDz589HREQEIiIi4OPjg5kzZ9rz2+bYosvKyoJSqTR/My7KycmBv78/1Go1KioqzNP37t2LqKgoBAQEICkpCR0dHb0uQ0R0NTCZTFAqldizZw9WrlyJefPmWZyvvr4eb775Jg4cOICCggIoFArodDpUV1eb5xkxYgS+/PJLPP/881i5ciUAIC4uDp9++imEEDh06BD+85//ALhQdFOnTgUApKamIj8/H42NjRg3bpx5fQUFBVCpVNDpdHjzzTetfoYHH3wQjz32GBobG5GVlWUuxY0bN0Kn06GmpgajR4/G8uXL+/W9upRDi2727Nn48ssve0yrrq5GXV0dmpubUVNTg+zsbHOhLVq0CHl5eWhpaYFarcbq1at7XYaI6GqRmpoKAJgxYwZaW1tx9uzZy+aJj4/vUUKWXNxbmzx5Mg4dOgTgf0W3Z88ehIaGIjAwEPv378eOHTsQFxeH06dP4+jRo0hISAAAPPTQQ78o++nTp2E0GnH//fcDAGbNmoWWlhb88MMPAC4Mtf72t7/FsmXLEB0d/YvW3RuHFl1MTAy8vb17TKuoqEBaWhoUCgV8fHwQHR2NyspKHDt2DHq9HomJiQCAjIwM856btWWIiKina665ptd5hg4dCgBQKBTmY3kRERHYv38/qqqqMHXqVMTFxeGjjz7C119/jZCQkMvW8UtP+e9t/uzsbISEhCA9Pf0XrdcWA36Mzmg0QqVSmd/7+vrCYDBYnX6lZYiIriZvvfUWAOC9997DxIkTbSq1ESNGWNzzu5SrqyuioqKwdu1aTJ06FVOnTkVBQQGmTJkCFxcXeHp6Yvz48fj4448BAGVlZeZlPTw8cObMmSuuf9SoUVCpVHjvvfcAAFu3boVarcaIESPw+uuv4+DBg1i1alWvOftiwC8vsHZz1CvdNNXWG6oWFhaisLDQ/P7kyZO/LBwRUS+kuiZWoVDAYDAgLCwMbm5uKC0ttWm5JUuWICoqCkqlssdxOkvi4uKg0+ng7+8PADh37hzi4uLMX9+0aRPS09MhhMDdd98NT09PAICXlxfuuusuBAcHIyoqyupxurfeeguLFi3CE088gdGjR2Pz5s0AgLy8PLi5uSEqKgoAcMcdd6CgoMCmz2cLFzEAt+X++fUfmZmZmDx5snn39IEHHkBKSgqio6MxZcoU6PV6AEBzczNSUlKwZ88eq8vMmjXritsNCgrq94NXecE40dVJCIEDBw4gMDCQd0f5/zo6OjBy5EgAQHl5OcrKyrB9+3aHb9faz8LW/+MHfOgyOTkZpaWlMJlMaGtrQ21tLRITE+Ht7Q2VSmU+9lZcXIzk5OQrLkNERAOnuroa4eHhCA0NxYYNG7B27VqpI9nEoUOXCxcuxPvvv28+LXbGjBkoLCxEVVUV1Go1XF1dsWbNGnh4eAAAioqKkJqaCq1WC41Gg/LycgBAQkKC1WWIiGhgJCUlISkp6Yrz/Pe//7W4I/Lqq68iNjbWQcmubECGLqXCoUsi6isOXQ4eTjd0SUTkTGS8L+A0+vsz4E2diYgscHFxwdChQ/H999/Dy8uLe3USufjg1aFDh/b5Z8CiIyKyQqVSwWAw4Pjx41JHuaoNHTq0x7XUvxSLjojICnd3d0ycOJHDlxLjg1eJiByMw5bOjSejEBGRrLHoiIhI1lh0REQkayw6IiKSNRYdERHJGouOiIhkjUVHRESyxqIjIiJZY9EREZGsseiIiEjWWHRERCRrLDoiIpI1Fh0REckai46IiGSNRUdERLLGoiMiIllj0RERkayx6IiISNZYdEREJGssOiIikjUWHRERyRqLjoiIZI1FR0REssaiIyIiWZOs6MrKyhAWFoaIiAjExsaiubkZAJCTkwN/f3+o1WpUVFSY59+7dy+ioqIQEBCApKQkdHR0SBWdiIiciCRF98MPPyArKwuffPIJdDodfv/73+Opp55CdXU16urq0NzcjJqaGmRnZ5sLbdGiRcjLy0NLSwvUajVWr14tRXQiInIykhRdd3c3hBDmEjt9+jTGjx+PiooKpKWlQaFQwMfHB9HR0aisrMSxY8eg1+uRmJgIAMjIyOixt0dERGSNmxQbHTlyJNatW4eQkBB4enrC09MTn3/+OR588EEkJyeb5/P19YXBYIDRaIRKpbpsOhERUW8k2aM7f/481q9fj127dqGtrQ0pKSl4/PHHIYSwOL+16ZcqLCxEUFCQ+XXy5El7xiYiIickSdHpdDoIIaDRaAAAc+bMQV1dHVQqVY89Nb1eD6VSCaVSaXH6pbRaLZqamsyvMWPGOP7DEBHRoCZJ0SmVSjQ3N6OtrQ0AUFVVhaCgICQnJ6O0tBQmkwltbW2ora1FYmIivL29oVKpUFlZCQAoLi7uMcRJRERkjSTH6MaPH48XXngBCQkJcHd3x9ixY1FSUgJfX19UVVVBrVbD1dUVa9asgYeHBwCgqKgIqamp0Gq10Gg0KC8vlyI6ERE5GRdh6wEwJxQUFISmpqZ+rcMv5327ZDn8wnS7rIeIiC6w9f943hmFiIhkjUVHRESyxqIjIiJZk+RkFCJyLHscW+ZxZZIL7tEREZGsseiIiEjWWHRERCRrLDoiIpI1Fh0REckai46IiGSNRUdERLLGoiMiIlnjBeNENuDNvYmcF/foiIhI1lh0REQkayw6IiKSNRYdERHJGouOiIhkjUVHRESyxqIjIiJZs6noAgIC8Pzzz+Po0aOOzkNERGRXNhVdTU0Nurq6EBsbixkzZuCf//wnuru7HZ2NiIio32wqOqVSiaeffhotLS1YuHAhMjMz4evri2eeeQanT592dEYiIqI+s/kY3aFDh/DUU09h6dKlSExMRFlZGVxdXTFt2jRH5iMiIuoXm+51OW3aNBw/fhyPPPIIdu/eDU9PTwDA1KlTUVlZ6dCARERE/WFT0eXm5iI6Otri12pra+0aiIiIyJ5sGrr84osvcPLkSfP7EydOYO3atQ4LRUREZC82Fd3mzZsxZswY8/trr70WpaWljspERERkNzYV3aWXEgghcP78eYcEIiIisiebii46OhoLFy7Evn37sG/fPmRmZiImJqZfGz579ixSU1Nx0003ITAwEBs2bAAA5OTkwN/fH2q1GhUVFeb59+7di6ioKAQEBCApKQkdHR392j4REV0dbCq6goICjB07FmlpaUhNTcWvfvUrFBQU9GvDy5YtQ3BwMJqbm7F//37MnDkT1dXVqKurQ3NzM2pqapCdnW0utEWLFiEvLw8tLS1Qq9VYvXp1v7ZPRERXB5vOuhw2bBiee+45PPfcc3bZ6JkzZ/Duu+9Cr9cDAFxcXHDdddehoqICaWlpUCgU8PHxQXR0NCorKxEdHQ29Xo/ExEQAQEZGBmbPno2VK1faJQ8REcmXTUV3/PhxvPHGGzh06BC6urrM00tKSvq00dbWVowbNw5LlizBF198gRtuuAEvv/wyjEYjkpOTzfP5+vrCYDDAaDRCpVJdNp2IiKg3NhVdUlISIiMjERMTA4VC0e+NdnV1QafT4aWXXsJrr72GkpISpKenY/jw4RbnF0LYtN7CwkIUFhaa3//8koirhV/O+/1ex+EXptshCRHR4GBT0bW3t+PVV1+120aVSiW8vLwQHx8PAJgzZw4effRRPPDAAz321PR6PaZMmQKlUnnZdKVSedl6tVottFqt+X1QUJDdMhMRkXOy6WSUuLg41NfX222j48aNQ3BwML766isAQFVVFYKDg5GcnIzS0lKYTCa0tbWhtrYWiYmJ8Pb2hkqlMt9urLi4uMcQJxERkTU27dF98MEHWL9+PZRKJYYOHQohBFxcXHDw4ME+b7ioqAgZGRk4e/YsRo8ejY0bN0Kj0aCqqgpqtRqurq5Ys2YNPDw8zPOnpqZCq9VCo9GgvLy8z9smIqKrh01F98knn9h9w0FBQfj8888vm56fn4/8/PzLpoeFhaGhocHuOYiISN5sGrq84YYb8OOPP0Kn0+GGG26Al5eXeU+LiIhoMLOp6NavX4+HHnoIy5YtAwB8++23SElJcWgwIiIie7Cp6DZs2ICdO3ea9+L8/f3x3XffOTQYERGRPdh0jG748OEYMmSI+f2lN3kmIhpseE0pXWRT0UVGRmLjxo3o6upCY2MjXn75Zdxxxx2OzkZENOiwQJ2PzTd1NhgMGDZsGNLT0+Hj44OXXnrJ0dmIiIj6zeabOj/77LN49tlnHZ2HiIjIrmwqutzcXIvTn376abuGISIisjebiu7nN3L+6aef8MEHHyAsLMxhoWhwsccxCWDgjkvwGAoR/ZxNRffkk0/2eL9ixQrcd999DglEVw8WEhENBJtORrmUQqEwPzSViIhoMLNpjy4hIQEuLi4ALlxDd+DAAaSlpTkyFxERkV3YVHRPPfXU/xZwc4Ofnx98fHwcFoqIiMhebCq6uLg4R+cgIifA46rkjGwqOnd3d/PQ5c9dfC7duXPn7B6M6GrA4iByPJvPurz22muRlpYGIQTeeustnDhxgtfRERHRoGfTWZfbtm3D0qVLMWrUKHh6emLJkiX4+9//7uhsRERE/WbTHp2rqyuqq6sRHx8PAPj444/h6tqnKxOIiOgSznZTBmdjU9GVlJQgLS0N3377LQDg+uuvx6ZNmxwajIiIyB5sKrqIiAjodDq0t7cDAEaNGuXQUER09eDejOPwZKcLbBp/PHPmDFasWIHMzEyMGjUKzc3N2Lp1q6OzERER9ZtNRZeeng4vLy80NjYCAHx9ffnIHiIicgo2FV1rayuWL18ON7cLI53Dhw+3eF0dERHRYGNT0bm7u+P8+fPmcmtra+NZl0RE5BRsaqvly5fj3nvvxbFjx/Doo48iJiamx/0viYiIBqtez7oUQuDWW29FWFgYqqqqIITA9u3bERgYOBD5iIiI+qXXonNxccHdd9+NPXv2QK1WD0QmIiIiu7Fp6DIwMBAHDx50dBYiIiK7s+mC8ba2NoSHh+Pmm2/GNddcY55eWVnpsGBERET2cMWiu+eee7B9+3a4urriww8/dEgArVaLDRs2oKurCwCQk5ODLVu2wNXVFXl5eZg1axYAYO/evUhNTUV7ezuCg4NRVlaGkSNHOiQTERHJxxWHLr/55hu0trbi9OnTUKvVCAgI6PHqr88++wwdHR3m99XV1airq0NzczNqamqQnZ1t/vqiRYuQl5eHlpYWqNVqrF69ut/bJyIi+bti0S1evBjTp0/HwYMHER0d3eMVExPTrw13dnYiJycHq1atMk+rqKhAWloaFAoFfHx8EB0djcrKShw7dgx6vR6JiYkAgIyMDFRUVPRr+0REdHW44tDlkiVLsGTJEqSnp6OkpMSuG87NzUVGRgbGjh1rnmY0GpGcnGx+7+vrC4PBAKPRCJVKddl0Z8abrRIRDQybzrq0d8k1Njaivr4e8+bN6zFdCGFxfmvTL1VYWIigoCDz6+TJk/3OSkREzk2S+3jt3LkTTU1NmDBhAvz8/GAymeDn54exY8f22FPT6/VQKpVQKpUWp19Kq9WiqanJ/BozZsyAfB4iIhq8JCm6zMxMHDlyBIcPH8bhw4ehUChw+PBhzJ07F6WlpTCZTGhra0NtbS0SExPh7e0NlUplvpyhuLi4xxAnERGRNTZdRzdQEhISUFVVBbVaDVdXV6xZswYeHh4AgKKiIqSmpkKr1UKj0aC8vFzitERE5AwGRdFdvIYOAPLz85Gfn3/ZPGFhYWhoaBjIWEREJAODouiIiMh5ONtZ43yoHBERyRqLjoiIZI1FR0REssaiIyIiWWPRERGRrLHoiIhI1lh0REQkayw6IiKSNRYdERHJGouOiIhkjUVHRESyxqIjIiJZY9EREZGsseiIiEjWWHRERCRrLDoiIpI1Fh0REckai46IiGSNRUdERLLGoiMiIllj0RERkayx6IiISNZYdEREJGssOiIikjUWHRERyRqLjoiIZI1FR0REssaiIyIiWWPRERGRrElSdAaDAdOmTYNGo0FwcDBWrFhh/lpOTg78/f2hVqtRUVFhnr53715ERUUhICAASUlJ6OjokCI6ERE5GUmKzs3NDS+++CL279+PhoYG1NbW4h//+Aeqq6tRV1eH5uZm1NTUIDs721xoixYtQl5eHlpaWqBWq7F69WopohMRkZORpOjGjx+PSZMmAQCGDBmCyMhI6PV6VFRUIC0tDQqFAj4+PoiOjkZlZSWOHTsGvV6PxMREAEBGRkaPvT0iIiJrJD9Gd+LECWzbtg0JCQkwGo1QqVTmr/n6+sJgMFidTkRE1Bs3KTd+7tw5pKSkICsrC4GBgRBCWJzP2vRLFRYWorCw0Pz+5MmTdslJRETOS7I9OpPJhLlz5yIiIgLLli0DAKhUqh57anq9HkqlEkql0uL0S2m1WjQ1NZlfY8aMcfwHISKiQU2yoluwYAE8PDx6nFSSnJyM0tJSmEwmtLW1oba2FomJifD29oZKpUJlZSUAoLi4GMnJyVJFJyIiJyLJ0OXOnTtRUlKCkJAQREZGAgDS09OxdOlSVFVVQa1Ww9XVFWvWrIGHhwcAoKioCKmpqdBqtdBoNCgvL5ciOhERORlJii46Otrqcbf8/Hzk5+dfNj0sLAwNDQ2OjkZERDIj+VmXREREjsSiIyIiWWPRERGRrLHoiIhI1lh0REQkayw6IiKSNRYdERHJGouOiIhkjUVHRESyxqIjIiJZY9EREZGsseiIiEjWWHRERCRrLDoiIpI1Fh0REckai46IiGSNRUdERLLGoiMiIllj0RERkayx6IiISNZYdEREJGssOiIikjUWHRERyRqLjoiIZI1FR0REssaiIyIiWWPRERGRrLHoiIhI1lh0REQka05VdDt27EBwcDD8/f0xf/58mEwmqSMREdEg5zRF193djfnz5+Nvf/sbvv76a7S3t6OsrEzqWERENMg5TdHt2rUL119/PYKCggAAGRkZqKiokDgVERENdk5TdEajESqVyvze19cXBoNBwkREROQMXIQQQuoQttiyZQu2bt2K8vJyAMD+/fsxd+5cNDQ0mOcpLCxEYWGh+X1raysmTpzo8GwnT57EmDFjHL4de3CmrIBz5WVWx3GmvM6UFXCuvJdmNRqNaG9v73U5N0eGsieVStVjD06v10OpVPaYR6vVQqvVDnQ0BAUFoampacC32xfOlBVwrrzM6jjOlNeZsgLOlbevWZ1m6HLSpEkwGo3mD1lcXIzk5GSJUxER0WDnNEWnUCiwceNGpKSk4MYbb8TIkSPx0EMPSR2LiIgGOacZugSAO++8c1DuYksxXNpXzpQVcK68zOo4zpTXmbICzpW3r1md5mQUIiKivnCaoUsiIqK+YNH1gzPdksxgMGDatGnQaDQIDg7GihUrpI5kE61WCze3wT/CfvbsWaSmpuKmm25CYGAgNmzYIHUkq8rKyhAWFoaIiAjExsaiublZ6kg9ZGVlQalUXvZzz8nJgb+/P9Rq9aC5WYSlrOXl5QgPD0dYWBgmTZqETz75RMKE/2Pt+woAp06dgo+PD+bPny9BMsus5a2vr8eUKVMQHByM4OBgHDlypPeVCeoTk8kkbrzxRrFv3z4hhBCzZ88WpaWlEqey7siRI2LXrl1CCCE6OztFTEyM2LZtm8Spruxf//qXePjhh4VCoZA6Sq8WLlwoXnzxRSGEEN3d3eLYsWMSJ7Ls7Nmz4tprrxXfffedEEKIoqIikZKSInGqnj777DNx9OjRHj/3qqoqERsbK7q6uoTRaBQqlUqcOXNGwpQXWMq6c+dOcfz4cSGEEI2NjeK6664TJpNJqohmlrJe9Mgjj4gHH3xQZGRkSJDMMkt529vbhVqtFk1NTUIIIU6dOiV++OGHXtfFPbo+crZbko0fPx6TJk0CAAwZMgSRkZHQ6/USp7Kus7MTOTk5WLVqldRRenXmzBm8++67ePTRRwEALi4uuO666yROZVl3dzeEEOjo6AAAnD59GuPHj5c4VU8xMTHw9vbuMa2iogJpaWlQKBTw8fFBdHQ0KisrJUr4P5ay3nbbbfDy8gIAhISEoLOzE2fPnpUiXg+WsgJATU0NOjs7MW3aNAlSWWcp71/+8hf85je/gUajAQB4enpi+PDhva6LRddHznxLshMnTmDbtm1ISEiQOopVubm5yMjIwNixY6WO0qvW1laMGzcOS5Yswc0334yZM2fim2++kTqWRSNHjsS6desQEhICHx8fbN68GX/+85+ljtUrZ/19e/vttxEaGgoPDw+po1j0448/YsWKFU7xByUAHDhwAJ2dnYiPj0dkZCRWrlwJYcP5lCy6PrLlmzsYnTt3DikpKcjKykJgYKDUcSxqbGxEfX095s2bJ3UUm3R1dUGn0yElJQVfffUV7rvvPqSnp0sdy6Lz589j/fr12LVrF9ra2pCSkoLHH39c6li9csbft4aGBuTk5KCkpETqKFY988wzWLBggVP8QQlc+F377LPPsGXLFnz++ef497//bdNTbFh0fWTLLckGG5PJhLlz5yIiIgLLli2TOo5VO3fuRFNTEyZMmAA/Pz+YTCb4+fnZdE87KSiVSnh5eSE+Ph4AMGfOHOzevVviVJbpdDoIIcxDP3PmzEFdXZ3EqXrnbL9vBw8exKxZs/D2228jICBA6jhW1dXVITc3F35+fli+fDn++te/YsGCBVLHskqlUiExMRGjR4/GsGHDMGPGDNt+1xxxEPFq0NXVJSZMmNDjZJSSkhKJU11Zenq6SEtLE93d3VJH+UWc4WSU22+/XezevVsIIcS2bdvEbbfdJnEiy44cOSK8vLyE0WgUQgjx8ssvi9/97ncSp7Ls5z/3ysrKHiejKJVK0d7eLmG6nn6e1WAwCH9/f/Hhhx9KmMg6a79PmzZtGlQno1z087wtLS3i17/+tfjpp5+EyWQSycnJ4vXXX+91HSy6fvj444+FRqMREydOFPPmzRPnz5+XOpJVtbW1AoAICQkR4eHhIjw8XKxdu1bqWDZxhqLbt2+fuOWWW0RoaKiIjY01nxU2GL3xxhtCo9GIsLAwMW3aNPHNN99IHamHBQsWCB8fHwFA+Pj4iMWLFwshhHjsscfExIkThb+/v3jnnXckTnmBpazz588Xo0aNMv+ehYeHi0OHDkkd1er39aLBVnTW8q5bt05oNBoRHBwsMjMzRVdXV6/r4p1RiIhI1niMjoiIZI1FR0REssaiIyIiWWPRERGRrLHoiIhI1lh0REQkayw6IiKSNRYdERHJGouOaJDYunUrwsPDERoairlz5+LMmTOYOnUqamtrzfP8/CGUbm5uyM3NRUREBMLCwnDw4EEAFx7F8+STTyI0NBTh4eHmxwedOHECc+bMwZQpUxAREYEtW7YAuHBH+FtvvRWRkZEIDg7Gtm3bBu5DEw2Awf/oZqKrwLfffovFixejvr4evr6++MMf/oDnnnvuisuYTCao1WrodDqsWrUKL730Et544w0UFxejoaEBu3fvxpAhQ/D9998DAP74xz8iPT0diYmJOHXqFCZPnow777wT69evx9KlS/HAAw9ACDFob55N1FcsOqJBoL6+HjExMfD19QVw4UG+CxYswIgRI6wu4+LiglmzZgEAJk+ejA8//BAA8NFHHyEzMxNDhgwBAPNDQLdv347Gxkb86U9/AnDhkU2tra2IiYlBbm4uWlpaMH36dERFRTnscxJJgUVHNAi4uLhYfO/m5obu7m4AF54ld/HfAODq6gp3d3cAgEKhQFdXFwDrz27r7u7Gjh07MHr06B7TJ02ahFtuuQUfffQRFi9ejJSUFDz22GN2+VxEgwGP0RENAlOmTMHOnTthNBoBAJs2bcKdd96JCRMmmJ+3VVFRYdMDSO+++24UFRXh3LlzAGAeurznnntQUFBgnq+hoQFCCHz99ddQqVR45JFHkJWVhS+++MLeH49IUtyjIxoEvL29sW7dOkyfPh3d3d0IDQ3Fhg0bcPToUcyePRubN2/GzJkzoVAoel1XRkYGDh06hMjISLi7uyM+Ph6rVq3CK6+8gqVLlyI0NBTd3d1QqVT44IMP8M4776C8vBxDhgzBsGHD8Nprrw3AJyYaOHxMDxERyRqHLomISNZYdEREJGssOiIikjUWHRERyRqLjoiIZI1FR0REssaiIyIiWWPRERGRrP0/5DJJdLusiDcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hist = Hist.from_seq(live[\"birthwgt_oz\"], name=\"birthwgt_oz\")\n", "hist.bar()\n", "decorate(xlabel=\"ounces\", ylabel=\"frequency\")" ] }, { "cell_type": "markdown", "id": "c3c93c85", "metadata": {}, "source": [ "In theory we expect this distribution to be **uniform** -- that is, all quantities should have the same frequency.\n", "In fact, 0 is more common than the other quantities, and 1 and 15 are less common, probably because respondents round off birth weights that are close to a whole number of pounds." ] }, { "cell_type": "markdown", "id": "fe115047", "metadata": {}, "source": [ "As another example, let's look at the histogram of `agepreg`, which is the mother's age at the end of pregnancy." ] }, { "cell_type": "code", "execution_count": 23, "id": "6acf262e", "metadata": {}, "outputs": [], "source": [ "hist = Hist.from_seq(live[\"agepreg\"], name=\"agepreg\")" ] }, { "cell_type": "markdown", "id": "0786446c", "metadata": {}, "source": [ "In the NSFG, age is reported in centiyears, so there are more unique values than in the other distributions we've looked at.\n", "For that reason, we'll pass `width=0.1` as a keyword argument to the `bar` method, which adjusts the width of the bars so they don't overlap too much." ] }, { "cell_type": "code", "execution_count": 24, "id": "c2655abf", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAAf70lEQVR4nO3dfXRT9f0H8HeTUgFJS62A0qRUrBHSIq30iCzhYWArmzBsrec4NkcGRYbxwGH1j6AcNxhnvy1z1R1PVRir3VHHFCJVBGZbVy2hG6LQUSnL3Io0KeADdLToKG16f39wGlto6U2am+R+836dk3PI072fb79p39xP7kOcJEkSiIiIBKWJdAFERERKYtAREZHQGHRERCQ0Bh0REQmNQUdEREJj0BERkdAYdEREJLT4SBcgV2JiIvR6faTLICKiKOT1etHe3j7gc6oJOr1ej6ampkiXQUREUchkMg36HFuXREQkNAYdEREJTTWtSyIikfA0w8GJi4sL+D2KBt3nn3+O/Px8//0zZ85g1qxZ2LVrF+x2O3bu3AmNRoP/+7//wwMPPKBkKUREUaGrqwsejwednZ2RLkWVrrvuOhgMBowYMUL2exQNuvHjx6OhocF//5577sGDDz6Impoa1NfXw+12+8Pv3nvvxZgxY5Qsh4go4jweD3Q6HdLT04PaOollkiTh7Nmz8Hg8mDx5suz3he07ulOnTuHDDz/E/fffD6fTCavVCq1Wi9TUVJjNZlRVVYWrFCKiiJAkCZ2dnUhJSYFGo0FcXBxvAdw0Gg1SUlLQ2dkZUOs3bEG3fft23H///Rg9ejS8Xi8MBoP/ubS0NHg8nnCVQkQUUdySC14wP7uwBd0rr7yCH/7whwDkfQlbVlYGk8nkv7W1tSldIsWAdPueSJdARGEWlr0um5qa8MUXX2D+/PkAAIPB0G8LrqWlBXfddVe/99hsNthsNv/9ax0MSESkVkr85+vTX90X8mWGQnd3N+Ljw7+zf1i26F5++WUsXboUGs3l1RUWFqKiogI+nw+tra1wuVz99s4kIiLlFRUVITc3F1lZWVi3bh0A4OTJk7BYLMjKysLKlSsxadIkeL1eAMB7770Hi8WCGTNmID8/37/BYrVa8ZOf/AR33XUXbrvtNpSWlvrXER8fjw0bNiAnJwdvvPEGjh49ivnz52PGjBmwWCxobGwEAJw7dw7f/e53kZmZiQceeAAzZ86Ey+UKyTgVj1ZJkvCnP/0Ju3fv9j+Wl5eH6upqGI1GaDQalJaWQqfTKV0KERH1sWXLFqSkpKCnpweFhYV455138Pzzz2PZsmVYuXIl3n77bWzbtg3A5SB64oknsG/fPiQlJWHHjh14/PHH8dprrwEAPv74Y7hcLnz99deYMWMG8vLyMG3aNPh8PkyePBlHjhxBV1cXZs+eDafTidTUVBw6dAjFxcU4ePAgNm7ciJycHOzduxf/+Mc/MGPGjJCNU/Ggi4uLw8mTJ6963OFwwOFwKL16IiIaxNatW/H666/D5/Ph888/h8ViQV1dHbZv3w4AWLRoEZKTkwHAf0jY3LlzAQA9PT39NlC+//3vIyEhAQkJCfje976Huro6TJs2DQCwdOlSAIDb7caxY8dw333ftFbPnTsHAKirq8Orr74KAJg+fbr/vaHAM6MQEcWg999/H06nE3V1ddDpdCgpKcHFixcHfb0kSZg9ezYqKysHfH6wvSG1Wi1GjhzpX8att97a7/jqwYRyz1Se65KIKAadP38eY8eOhU6nw9mzZ+F0OgEAc+bM8W/R7d2717/H+6xZs/DBBx/g448/BnD5DC+9368BwJ///Gd0dXXh/Pnz2L17N+bMmXPVOqdMmYKOjg68++67AC4H35EjR65ab2NjI44ePRqysTLoiIhi0MKFCzFmzBjcfvvtKCoq8gfTs88+i/LycmRlZaGyshITJkxAUlISbrzxRmzfvh3FxcWYPn06srOzUVdX51+eyWSC2WxGbm4uHn300QFbjyNGjEBlZSU2b96M6dOnIzMz0x+wTz31FA4dOoTMzExs3LgRWVlZSEpKCslY2bokIoqgSB0KkJCQMGAb8uuvv8b+/fuh0Wjgcrngcrn838XNnTsXf//73wdcnsViwYsvvnjV493d3f3uT5s2DbW1tVe9TqfTYffu3RgxYgQ++eQTzJ8/HxkZGUGM7GoMOiIi8mtsbMSqVavQ09ODhIQEvPTSS2FZ7+nTp1FQUACfzwdJkvDiiy9i1KhRIVk2g46IiPxmzpwpa2eRvioqKoa93kmTJuHw4cPDXs5A+B0dEREJjUFHRBRmvOhq8IL52bF1SUQUJnFxcbjuuutw9uxZpKSk8CoGAeq9Ht11110X0M+OQUdEFEa9J7X/8ssvI12KKvVeYTwQDDpSlXT7nqg9MzuRHCNGjMDkyZPZvgxSMFvBDDoioghg2zJ8uDMKEREJjUFHRERCY9AREZHQGHSkWun2PZEugYhUgEFHRERCY9AREZHQGHQUEuFsIw60LrYxiWgwDDoiIhKaokH31VdfYdmyZbj99tsxZcoUbNmyBQBgt9uRkZEBo9Hov7osERGREhQNupKSEmRmZsLtduP48eMoKChATU0N6uvr4Xa7UVtbi3Xr1uHChQtKlkFRSLRWo2jjIRKJYqcA6+jowFtvvYWWlhYAl093M378eDidTlitVmi1WqSmpsJsNqOqqgqFhYVKlUJERDFMsS265uZmTJgwAY899hjuvPNOFBQU4OTJk/B6vf3OPJ2WlgaPx6NUGUREFOMUC7ru7m40NDSgqKgIhw8fxuLFi7F8+XLZZ+wuKyuDyWTy39ra2pQqlaJQbyuQLUEiGi7Fgk6v1yMlJQX33HMPAOChhx7CRx995L8WU6+Wlhbo9fqr3m+z2dDU1OS/JScnK1UqEREJTLGgmzBhAjIzM3H48GEAQHV1NTIzM1FYWIiKigr4fD60trbC5XIhPz9fqTKIiCjGKXo9uhdeeAErVqzAV199hbFjx2Lbtm2YOnUqqqurYTQaodFoUFpaCp1Op2QZJLhg25u9F3HlxVyJxKZo0JlMJvztb3+76nGHwwGHw6HkqomIiADwzCgU47izC5H4GHRERCQ0Bh0REQmNQUcRo8a2oRprJop1DDoiIhIag46IiITGoKOwYMuPiCKFQUdEREJj0BERkdAYdBQy0dSejKZaiCiyGHRERCQ0Bh0REQmNQUdBC7Q9mG7fc833REu7MdJ1DPVzIqLAMOiIiEhoDDoiIhIag44iLtxtOrYFiWILg46IiITGoCMiIqEx6Chq9bYY1dhqVGPNRKJSNOjS09ORmZmJ7OxsZGdno7GxEQBgt9uRkZEBo9EIp9OpZAlERBTjFN+ie+edd9DQ0ICGhgZMmzYNNTU1qK+vh9vtRm1tLdatW4cLFy4oXQZFOTVtvQ1VYyBjUMN4idQu7K1Lp9MJq9UKrVaL1NRUmM1mVFVVhbsMIiKKEYoH3eLFi5GdnY0nn3wSXV1d8Hq9MBgM/ufT0tLg8XiULoOIiGKUokG3f/9+HDlyBAcOHIDb7cbTTz8NSZJkvbesrAwmk8l/a2trU7JUGoZQtvIGe73cZQzn9FmhqJOIoo+iQde75Xb99dejuLgY9fX1MBgM/bbgWlpaoNfrr3qvzWZDU1OT/5acnKxkqUREJCjFgu6rr75Ce3s7AMDn88HpdOKOO+5AYWEhKioq4PP50NraCpfLhfz8fKXKICKiGKdY0H322WeYM2cO7rjjDtxxxx2QJAlPPvkk8vLycPfdd8NoNGLevHkoLS2FTqdTqgyKoGhp7QVTR7TUTkTDF6/UgidPnoyGhoYBn3M4HHA4HEqtmoiIyI9nRiEiIqEx6EgY4Ww3sh1KpB4MOiIiEhqDjoiIhMago5gUTa1HtjSJlMWgIyIioTHoiIhIaAw6kk3kFttgY5Mz5mu9RsmfmcjzQRRKDDoiIhKarKC77bbb8Mtf/hKnT59Wuh6KcnKuDhDtx7OFi5IXYO37+mj+GRBFA1lBV1tbi+7ubsyePRtLlizB7t270dPTo3RtREREwyYr6PR6PZ566il88sknWLVqFVavXo20tDT8/Oc/x/nz55WukYiIKGiyv6M7ceIENmzYgDVr1iA/Px+vvPIKNBoNFixYoGR9pDLR1EaLplqIKHJkXb1gwYIF+PLLL7Fy5Up89NFHSEpKAgDMmzcPVVVVihZIREQ0HLKCbtOmTTCbzQM+53K5QloQERFRKMlqXX7wwQdoa2vz3z937hx+97vfKVYU0VCUOoWX0u3OaDr12HBrkLMHLlE0kBV0f/zjH5GcnOy/f8MNN6CiokKpmoiIiEJGVtBdeSiBJEno6upSpCAiIqJQkhV0ZrMZq1atwrFjx3Ds2DGsXr0aFotF6doojAZrTYVyeaFYbqSEq+bh/NwGO4h8qIPL1TgfRIGQFXTPPPMMxo0bB6vVimXLluHGG2/EM888o3RtREREwyYr6EaOHInNmzfj0KFD+PDDD7F582aMGjVK9kpsNhvi47/ZwdNutyMjIwNGoxFOpzPwqomIiGSSdXjBl19+id///vc4ceIEuru7/Y+Xl5cP+d79+/fjwoUL/vs1NTWor6+H2+3GmTNnMGvWLNx7770YM2ZMEOUTKUepvTR73/Ppr+4b8nW9r+l9T9/HiEgeWUF3//33IycnBxaLBVqtVvbCOzs7YbfbUVlZiVdffRUA4HQ6YbVaodVqkZqaCrPZjKqqKhQWFgY3AiIiomuQFXTt7e147rnnAl74pk2bsGLFCowbN87/mNfr7RdqaWlp8Hg8AS+biIhIDlnf0c2dOxcHDx4MaMFHjx7FwYMH8eMf/7jf45IkyXp/WVkZTCaT/9b3gHWKHtxjj4iinayg27t3L771rW9h0qRJMBqNuO2222A0Gq/5ngMHDqCpqQm33HIL0tPT4fP5kJ6ejnHjxvXbgmtpaYFer7/q/TabDU1NTf5b3wPWiYiI5JLVuvzrX/8a8IJXr16N1atXf7Oi+Hh8+umnqK6uxi9+8QssW7YMZ86cgcvlwtatWwNePoWPksdeKXlx0mgx2A4koRhPsMuQu0MMkQhkbdFNmjQJ//vf/9DQ0IBJkyYhJSUFOp0uqBXm5eXh7rvvhtFoxLx581BaWhr0soiIiIYiK+ief/55PPzwwygpKQEAnDlzBkVFRQGtqO9hCQ6HA//5z3/wySef4MEHHwxoOURERIGQFXRbtmzBgQMH/FteGRkZ+OKLLxQtjJQlt+Wl1nZhr0i2BwNdRiTawaFalto/JyQ2WUE3atQoJCQk+O9feZJnIiKiaCUr6HJycrBt2zZ0d3fj6NGjKC4uxre//W2layMiIho22Sd19ng8GDlyJJYvX47U1FT85je/Ubo2opgX6B6vgVy1YDg1EKmJrMMLRo4ciY0bN2Ljxo1K10NERBRSsoJu06ZNAz7+1FNPhbQYIiKiUJPVutRqtf5bV1cX3nzzTZw4cULp2ohIAdyTkmKNrC26J598st/99evXY/HixYoUREREFEqytuiupNVq0dLSEupaiIiIQk7WFl1eXh7i4uIAXD6G7p///CesVquSdZEg2P6KHpwLilWygm7Dhg3fvCE+Hunp6UhNTVWsKCIiolCRFXRz585Vug4iIiJFyPqObsSIEUhISLjq1vs4iUe0Nlc4xhPJn1k41y3aZ4PEJ3uvyxtuuAFWqxWSJOHll1/GuXPneBwdERFFPVlbdJWVlVizZg0SExORlJSExx57DG+88YbStVEE8H/rw8Of3zf4s6BoISvoNBoNampq/PffffddaDRBHZlAREQUVrJal+Xl5bBarThz5gwAYOLEiXjppZcULYyIiCgUZAVddnY2Ghoa0N7eDgBITExUtCiKDLaaYlfv3H/6q/siXAlR6MnqP3Z0dGD9+vVYvXo1EhMT4Xa7sWvXLqVrIyIiGjZZQbd8+XKkpKTg6NGjAIC0tDTZl+zJz89HdnY2pk2bhqKiIv9Wod1uR0ZGBoxGI5xOZ5DlExERXZusoGtubsbjjz+O+PjLnc5Ro0b5Twk2lB07dqChoQGNjY3Q6/UoLS1FTU0N6uvr4Xa7UVtbi3Xr1uHChQvBj4KIogZb4BRtZB8w3tXV5Q+31tZW2XtdJiUlAbh8jsyLFy8iLi4OTqcTVqsVWq0WqampMJvNqKqqCnIIREREg5OVVo8//jgWLVqEzz77DD/96U9hsVj6nf9yKAUFBRg/fjzcbjdKSkrg9XphMBj8z6elpcHj8QRePRER0RCGDDpJkjBr1iw899xzeOKJJzB58mTs27cPBQUFsleya9cunDp1Cnq9Hjt37oQkSUO+p6ysDCaTyX9ra2uTvT4aHraeaCBDfS7kfG6u9Zp0+x7/8/wMUigNeXhBXFwcFi5ciMbGRhiNxqBXlJCQgIceeghbt26FwWDotwXX0tKCu+66q9/rbTYbbDab/77JZAp63UREFLtktS6nTJmCf/3rXwEvvKOjA6dPnwZw+Tu6t956C5mZmSgsLERFRQV8Ph9aW1vhcrmQn58f8PKJiIiGIuuA8dbWVkyfPh133nknrr/+ev/jQ+1A0tHRgSVLlqCzsxM9PT2YOXMmNmzYgNGjR6O6uhpGoxEajQalpaXQ6XTDGwldJd2+Z8ADgNkWosH0fmaCbVNe+Xjf+zwYnSLlmkH3ne98B/v27YNGo8Ff/vKXgBc+ceJEHDp0aMDnHA4HHA5HwMskIiIKxDWD7uTJk2hubsb58+dhNBpl7URCREQUTa4ZdI8++ijuu+8+NDc3w2w29wu6uLg4NDc3K14gKY+tTHGFYk/JYF4/0OuG2uOSSCnX3Bnlsccew/Hjx/GDH/wAzc3NOHHihP/GkCMiIjWQtddleXm50nUQkUoFszXW95g5IqXx6qlERCQ0Bh0REQmNQRfD2DqiaMdTglEoMOiIiEhoDDoiIhIagy4GsP1DRLGMQUdEREJj0BERkdAYdEREJDQGHRERCY1BR0REQmPQEZEqcO9hChaDjoiIhMagIyIioTHoYhzbQBRpofoM8rNMg1Es6DweDxYsWICpU6ciMzMT69ev9z9nt9uRkZEBo9EIp9OpVAlERESIV2zB8fH49a9/jdzcXFy6dAkLFizAm2++ieuvvx719fVwu904c+YMZs2ahXvvvRdjxoxRqpSYk27fg09/dV+kyyCV4pYRiUaxLbqbb74Zubm5AICEhATk5OSgpaUFTqcTVqsVWq0WqampMJvNqKqqUqoMIiKKcWH5ju7cuXOorKxEXl4evF4vDAaD/7m0tDR4PJ5wlEFERDFI8aC7dOkSioqKsHbtWkyZMgWSJMl6X1lZGUwmk//W1tamcKXql27fw7YTCeNan+Urn5PzuefvRuxSNOh8Ph+WLl2K7OxslJSUAAAMBkO/LbiWlhbo9fqr3muz2dDU1OS/JScnK1kqEREJStGge+SRR6DT6fDb3/7W/1hhYSEqKirg8/nQ2toKl8uF/Px8JcsgIqIYpthelwcOHEB5eTmysrKQk5MDAFi+fDnWrFmD6upqGI1GaDQalJaWQqfTKVUGEUWZvi1EJVqO3OuYrqRY0JnN5kG/j3M4HHA4HEqtmoiIyI9nRiEiIqEptkVH4RNIa4d7nhFRrOEWHRERCY1BR0REQmPQxQi2LEkEAx0oHuhenAMtk+1/sTHoiIhIaAw6IiISGoNOUGyvUCzr/fwH0pbk74y4GHRERCQ0Bh0RCW+wrTVuxcUGBh0REQmNQUdEREJj0KkcWy8kGiU/08FcLYG/Y+rHoCMiIqEx6IiISGi8eoFKsZ1CsW6o3wH+jlAvbtEREZHQGHRERCQ0Bh0R0RD6nlKM1IdBR0REQlM06NauXQu9Xo/4+P77vNjtdmRkZMBoNMLpdCpZAhERxThFg+7BBx/Ehx9+2O+xmpoa1NfXw+12o7a2FuvWrcOFCxeULCOmsdVCJF+ofl+COTCdlKNo0FksFtx00039HnM6nbBardBqtUhNTYXZbEZVVZWSZRARUQwL+3d0Xq8XBoPBfz8tLQ0ejyfcZRARUYwIe9BJkiTrdWVlZTCZTP5bW1ubwpURUawIZdtQbpuSrcrICXvQGQyGfltwLS0t0Ov1V73OZrOhqanJf0tOTg5nmUREJIiwB11hYSEqKirg8/nQ2toKl8uF/Pz8cJdBREQxQtGgW7VqFfR6PXw+H/R6PWw2G/Ly8nD33XfDaDRi3rx5KC0thU6nU7IMIqKrXKuVKLfNeOWB5Fe2KNmujA6KntR5y5YtAz7ucDjgcDiUXDUREREAnhkl6g30v0P+L5EoeIFurQW7DP6+Rg8GHRERCY1BR0REQuOFV1WArQ8iouBxi46IiITGoCMiIqEx6KIYW5ZEkaXEMXGDLXOw5fPvwPAx6IiISGgMOiIiEhqDLkqxjUGkLsP53Qzm4PJwX4FBzRh0REQkNAYdEREJjUEXZkOdP0/0FgIR9Sfnawq5r+FXHgNj0BERkdAYdEREJDQGXZhc63I7vFgjkfoE83sayOV9Bno8kNZksH9HRPz7w6AjIiKhMegiTMT/PRFRaAxnC/DK52K5c8SgIyIioUUs6N577z1kZmYiIyMDxcXF8Pl8kSqFiIgEFpGg6+npQXFxMXbs2IF///vfaG9vxyuvvBKWdcs9Vk3uZn0gx7rEatuAiPob6vc/FKcTu9bzg+0cJ/dv1JXPBfu3LVx/ByMSdIcOHcLEiRNhMpkAACtWrIDT6YxEKUREJLiIBJ3X64XBYPDfT0tLg8fjiUQpREQkuDhJkqRwr3Tnzp3YtWsXXn31VQDA8ePHsXTpUhw5csT/mrKyMpSVlfnvNzc3Y/LkyUMuu62tDcnJyaEvOoJEHBMg5rhEHBMg5rhEHBMg5rjkjMnr9aK9vX3A5+KVKGooBoOh3xZcS0sL9Hp9v9fYbDbYbLaAl20ymdDU1DTsGqOJiGMCxByXiGMCxByXiGMCxBzXcMcUkdZlbm4uvF6vv/A//OEPKCwsjEQpREQkuIgEnVarxbZt21BUVIRbb70VY8aMwcMPPxyJUoiISHARaV0CwPz58xXZvA6m3RntRBwTIOa4RBwTIOa4RBwTIOa4hjumiOyMQkREFC48BRgREQlNtUG3du1a6PV6xMf3777a7XZkZGTAaDSq8iD0gcb13nvvQafTITs7G9nZ2SgoKIhghYHzeDxYsGABpk6diszMTKxfv97/nFrna7AxqX2uACA/Px/Z2dmYNm0aioqK/Ltsq3Wueg00LhHmC7jc2uv7N0PtcwX0H9Ow50lSqf3790unT5+WtFqt/7Hq6mpp9uzZUnd3t+T1eiWDwSB1dHREsMrADTSu2tpaacGCBRGsanhOnTolHTp0SJIkSers7JQsFotUWVmp6vkabExqnytJkqT//ve//n+vXbtW+tnPfqbqueo10LhEmK+6ujrpRz/6kf9vhghzdeWYhjtPqt2is1gsuOmmm/o95nQ6YbVaodVqkZqaCrPZjKqqqghVGJyBxqV2N998M3JzcwEACQkJyMnJQUtLi6rna7AxiSApKQnA5XPSXrx4EXFxcaqeq14DjUvtOjs7Ybfb8fTTT/sfU/tcDTSm4VJt0A1E5FOLffTRR8jJycGcOXPwzjvvRLqcoJ07dw6VlZXIy8sTZr76jgkQY64KCgowfvx4uN1ulJSUCDNXV44LUPd8bdq0CStWrMC4ceP8j6l9rgYaEzC8eYrY4QVKkATdgfTOO+/EyZMnkZiYiGPHjmHhwoWoq6vDLbfcEunSAnLp0iUUFRVh7dq1mDJlihDzdeWYJk6cKMRc7dq1C5cuXcKKFSuwc+dOIeYKuHpchYWFqp2vo0eP4uDBg9i8eXO/x9U8V4ONabh/A4XaopNzajE1SkxMRGJiIgAgMzMTZrMZhw8fjnBVgfH5fFi6dCmys7P9/5NW+3wNNCYR5qpXQkICHnroIezatUv1c9VX33Gpeb4OHDiApqYm3HLLLUhPT4fP50N6ejrGjRun2rkabEwAhjdPofjiMJL67rRRVVXV70tYvV4vtbe3R7C64PUd16lTp6Senh5JkiTJ6/VKaWlp0vHjxyNVWlCWL18uWa1W/zgkSf3zNdCY1D5X7e3t0qlTpyRJkiSfzyc98sgj0vr161U/V4ONS+3z1Vfv3wy1z1VfvWMa7jyptnW5atUq7NmzBz6fD3q9HkuWLEFZWRmqq6thNBqh0WhQWloKnU4X6VIDMtC4pk6dihdeeAEjRowAAGzevBlTpkyJcKXyHThwAOXl5cjKykJOTg4AYPny5VizZo1q52uwMWk0GlXPVUdHB5YsWYLOzk709PRg5syZ2LBhA0aPHq3auQIGH1d5ebmq52sgeXl5qp6rgTidzmHNE8+MQkREQhPqOzoiIqIrMeiIiEhoDDoiIhIag46IiITGoCMiIqEx6IiISGgMOiIiEhqDjoiIhMagI4pCRUVFyM3NRVZWFtatWwcAOHnyJCwWC7KysrBy5UpMmjQJXq8XwOULU1osFsyYMQP5+fmqOls9kdJ4ZhSiKHT27FmkpKSgp6cHhYWFWL16NZ5//nksWrQIK1euxNtvv43FixfD4/Fg9OjRWLRoEfbt24ekpCTs2LEDO3fuxGuvvRbpYRBFBdWe65JIZFu3bsXrr78On8+Hzz//HBaLBXV1ddi+fTsAYNGiRUhOTgYA1NfXw+12Y+7cuQAuX1hU7ec2JAolBh1RlHn//ffhdDpRV1cHnU6HkpISXLx4cdDXS5KE2bNno7KyMnxFEqkIv6MjijLnz5/H2LFjodPpcPbsWTidTgDAnDlz/Ft0e/fuRVtbGwBg1qxZ+OCDD/Dxxx8DALq6utDY2BiZ4omiEIOOKMosXLgQY8aMwe23346ioiLMmTMHAPDss8/6Lw1UWVmJCRMmICkpCTfeeCO2b9+O4uJiTJ8+HdnZ2airq4vwKIiiB3dGIVKJr7/+GiNHjoRGo4HL5cIjjzyCpqamSJdFFPX4HR2RSjQ2NmLVqlXo6elBQkICXnrppUiXRKQK3KIjIiKh8Ts6IiISGoOOiIiExqAjIiKhMeiIiEhoDDoiIhIag46IiIT2/4MZ/9hbYOT2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hist.bar(width=0.1)\n", "decorate(xlabel=\"age\", ylabel=\"frequency\")" ] }, { "cell_type": "markdown", "id": "8f5b352c", "metadata": {}, "source": [ "The peak of the distribution is between ages 20 and 25, but there is no clear mode at a specific age.\n", "The distribution is very roughly bell-shaped, but it is skewed to the right -- that is, the tail extends farther right than left.\n", "\n", "Finally, let's look at the histogram of `prglngth`, which is the length of the pregnancy in weeks.\n", "The `xlim` argument sets the limit of the x-axis to the range from 20 to 50 weeks -- there are few values outside this range, and they are probably errors." ] }, { "cell_type": "code", "execution_count": 25, "id": "4be5468c", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAAbq0lEQVR4nO3df1BVdf7H8RdcRE3BMdcyuZewhRugJKBliYWbwdZaqaxNrTsJiZlK6bi2O1hMv0bTtqRtdsl2S6TSmWaTxXZrmxV3LVNn3LaVFUWJBokLbrSmC9pXES7n+0fjXSl+XPBeL3x4PmaY8Z5zP/e+P3z0vvyc87nnBFmWZQkAAEMFB7oAAAD8iaADABiNoAMAGI2gAwAYjaADABiNoAMAGI2gAwAYLSTQBfhTeHi47HZ7oMsAAPhAXV2dmpqaetzO6KCz2+2qqKgIdBkAAB+Ij4/vVTsOXQIAjEbQAQCMZvShSwAIFC4j3HtBQUE+fT2CDgB8qKWlRS6XS83NzYEupd8aPHiwHA6HBg0a5JPXI+gAwIdcLpfCwsIUFRXl85nJQGBZlr766iu5XC5dc801PnlNgg4AfMSyLDU3NysqKkrBwSyB6I2goCCNGjVKx48fl2VZPvnPAiMBAD7GTO7icI4OgBGict/z6nk162b6uRJ05amnnlJISIjy8vJ61b6mpka7du3S/PnzPY9vu+02ffbZZ74ss0sEHQD4kbeB3hO+DP/W1laFhPgvCmpqavTGG294gi4QOHQJAIYKCQnRY489poSEBCUnJ6u8vFySVFRUpDvvvFM//OEPNWHCBEnSL3/5S8XExGjKlClatGiRFi5c+J3Xe+qpp5SZmakZM2YoOjpajz32mGffjh07FB8fr6SkJP3iF79QdHS0JGnFihXat2+fEhMTlZubK0lqa2vTww8/rISEBE2dOlVffvmlX38PBB0AGMrtdstut6u8vFxPPvmkHnjgAc++ffv26Y033tCRI0e0f/9+bdq0Sfv379dHH32kgwcPdvqa5eXlevfdd/Wvf/1LmzZtUl1dnc6ePausrCxt3bpV+/fvV1tbm+f5L774oqZMmaKysjKtW7dO0jezvHnz5qm8vFzJycl69dVX/fdLEEEHAEbLzMyUJM2aNUvV1dX6+uuvJUm33XabrrzySknSrl27dNddd2n48OEKDQ3Vvffe2+nrzZw5U0OHDtWwYcMUGxurmpoaVVZWauzYsZ5rUd5///1d1hQREaGpU6dKkq6//nodPXr0ovvZFYIOAAagYcOGdbqvq1WPgwcP9vzZZrOptbW1R+29fQ1fIugAwGBvvvmmJOndd9/VNddc02HA3XzzzXr33Xf19ddfq6WlRb///e979B7XXnutjh07piNHjkiSNm/e7NkXFhbWq1vr+BKrLgHAUDabTS6XS9ddd51CQkJUVFTU4fOSk5M1f/58JSYm6vLLL1dsbKxGjBjh9fsMGTJEhYWFmjNnjoYMGaLU1FRP+4kTJ2rEiBG67rrr9KMf/UiLFy/2Rdd6JMgy+Mqj8fHx3I8O6KNM/B6dZVk6cuSIYmNj+8SXxkNCQrw+LHj69GkNHz5cLS0tmj17tubPn9/lubrO2kvSmjVrVFdXpw0bNvSq7s5+j739TGdGBwDQI488orKyMp05c0ZpaWm65557etT+jTfe0O9+9zu1tLQoKipKhYWFfqq05wg6ADBUTxZ5bNq06aLea+nSpVq6dOlFvYa/sBgFAGA0gg4AfMzgpQ+XhK9/fxy6BAAfCQoK0uDBg/XVV19p1KhRfWJBSn9z/n50gwcP9tnvj6ADAB9yOBxyuVw6fvx4oEvpt87fYdxXCDoA8KFBgwbpmmuu4fDlReB+dADQD3DYsu9gMQoAwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBolyTocnJyFBLyv4uw5ObmKjo6Wk6nU8XFxZ7tBw8e1KRJkxQTE6PZs2fr9OnT3bYBAKArfg+6jz76qF1g7dixQ3v37lVlZaV27typFStWePYvXrxYa9euVVVVlZxOp9avX99tGwAAuuLXoGtublZubq5eeOEFz7bi4mJlZWXJZrMpIiJCKSkp2r59uxoaGlRbW6v09HRJUnZ2tmfm1lkbAAC649ege+aZZ5Sdna3Ro0d7ttXV1bW7/UJkZKRcLlen27tqAwBAd/wWdAcOHNC+ffv0wAMPtNve2a0rurqlhbe3uygoKFB8fLzn5+TJk94XDAAwkt+Cbs+ePaqoqNC4ceMUFRUlt9utqKgojR49ut1srLa2Vna7XXa7vcPt0v9uZNjRvgvl5OSooqLC8zNy5Eh/dQ8A0E/4LeiWLFmiY8eOqaamRjU1NbLZbKqpqdG8efNUVFQkt9ut+vp67d69W+np6RozZowcDofn3NvGjRuVkZEhScrIyOiwDQAA3bnkN15NS0tTaWmpnE6ngoODlZ+fr7CwMEnShg0blJmZqZycHMXFxWnLli3dtgEAoCtBlsH3e4+Pj1dFRUWgywDQgajc97x6Xs26mX6uBP1Fbz/TuTIKAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaAQdAMBoBB0AwGgEHQDAaH4PuvT0dCUmJiohIUFz585VU1OTJCk3N1fR0dFyOp0qLi72PP/gwYOaNGmSYmJiNHv2bJ0+fdqzr7M2AAB0xu9B9/bbb6usrEzl5eWy2+3Kz8/Xjh07tHfvXlVWVmrnzp1asWKFJ9AWL16stWvXqqqqSk6nU+vXr5ekLtsAANAZvwfdiBEjJEltbW06e/asgoKCVFxcrKysLNlsNkVERCglJUXbt29XQ0ODamtrlZ6eLknKzs72zNw6awMAQFe8CrqYmBg9++yz+ve//92rN5kzZ46uuOIKVVZWauXKlaqrq5PD4fDsj4yMlMvl6nS7pC73AQDQGa+CbufOnWptbdXNN9+sWbNm6U9/+pPa2tq8fpOSkhIdO3ZMdrtdW7dulWVZHT6vs+3d7TuvoKBA8fHxnp+TJ096XSMAwExeBZ3dbtcTTzyhqqoqPfTQQ1qyZIkiIyP11FNPqbGx0as3Cg0N1X333aeSkhI5HI52s7Ha2lrZ7XbZ7fYOt0vqtM2FcnJyVFFR4fkZOXKkV7UBAMzl9Tm6o0ePKi8vT8uWLVN6ero2b96s4OBgzZgxo9M2p06d8hzubGtr0x//+EeNHz9eGRkZKioqktvtVn19vXbv3q309HSNGTNGDofDc+5t48aNysjIkKRO2wAA0JUQb540Y8YMHT9+XA8++KA++eQTzwKT6dOnd7kg5NSpU5o1a5aam5vV1tamKVOmKC8vT5dddplKS0vldDoVHBys/Px8hYWFSZI2bNigzMxM5eTkKC4uTlu2bJEkpaWlddoGAIDOBFlenPzas2ePUlJSLkU9PhUfH6+KiopAlwGgA1G573n1vJp1M/1cCfqL3n6me3Xo8u9//3u7hR0nTpzQSy+91OM3AwDgUvMq6F5//fV2Czsuv/xyFRUV+asmAAB8xqug+/ZXCSzLUktLi18KAgDAl7wKupSUFD300EM6dOiQDh06pCVLlmjatGn+rg0AgIvmVdC9+OKLGj16tLKyspSZmanvfe97evHFF/1dGwAAF82rrxcMGTJEq1ev1urVq/1dDwAAPuVV0B0/flyvvvqqjh49qtbWVs/2wsJCvxUGAIAveBV0s2fPVlJSkqZNmyabzebvmgAA8Bmvgq6pqUm//vWv/V0LAAA+59VilNTUVO3bt8/ftQAA4HNezej+/Oc/6+WXX5bdbtfgwYNlWZaCgoL06aef+rs+AAAuildB97e//c3fdQAA4BdeHbq8+uqrdebMGZWVlenqq6/WqFGjuHMAAKBf8CroXn75Zd1///1auXKlJOmLL77Q3Llz/VoYAAC+4FXQ/fa3v9WePXs8s7jo6Gj95z//8WthAAD4gldBN3ToUIWGhnoef/sizwAA9FVeBV1SUpJee+01tba26sCBA1q4cKF+8IMf+Ls2AAAumtcXdXa5XBoyZIgWLFigiIgIPf/88/6uDQCAi+b1RZ2ffvppPf300/6uBwAAn/Iq6J555pkOtz/xxBM+LQYAAF/z6tClzWbz/LS0tOidd97R0aNH/V0bAAAXzasZ3eOPP97u8apVq3TXXXf5pSAAAHzJqxndt9lsNtXW1vq6FgAAfM6rGV1aWpqCgoIkffMduiNHjigrK8ufdQEA4BNeBV1eXt7/GoSEKCoqShEREX4rCgAAX/Eq6FJTU/1dBwAAfuFV0A0aNMhz6PJC5+9Ld+7cOZ8XBgCAL3i96vLyyy9XVlaWLMvSm2++qRMnTvA9OgBAn+fVqstt27Zp2bJlCg8P14gRI/Twww/rD3/4g79rAwDgonkVdMHBwdqxY4fn8V//+lcFB/fqmwkAAFxSXh26LCwsVFZWlr744gtJ0tixY7Vp0ya/FgYAgC94FXSJiYkqKytTU1OTJCk8PNyvRQEA4CteHX88deqUVq1apSVLlig8PFyVlZUqKSnxd20AAFw0r4JuwYIFGjVqlA4cOCBJioyM7PaWPS6XSzNmzFBcXJzGjx+vVatWefbl5uYqOjpaTqdTxcXFnu0HDx7UpEmTFBMTo9mzZ+v06dPdtgEAoCteBV11dbUeffRRhYR8c6Rz6NChHX6v7kIhISF67rnndPjwYe3fv1+7d+/WO++8ox07dmjv3r2qrKzUzp07tWLFCk+gLV68WGvXrlVVVZWcTqfWr18vSV22AQCgK14F3aBBg9TS0uIJt/r6+m5XXV511VWaPHmyJCk0NFRJSUmqra1VcXGxsrKyZLPZFBERoZSUFG3fvl0NDQ2qra1Venq6JCk7O9szc+usDQAA3fEq6B599FHdeeedamho0M9+9jNNmzat3fUvu3PixAlt27ZNaWlpqqurk8Ph8OyLjIyUy+XqdLukLvcBANCVblddWpalm266Sdddd51KS0tlWZbef/99xcbGevUG586d09y5c7V8+XLFxsbKsqxO36erGrxRUFCggoICz+OTJ0961Q4AYK5ugy4oKEi33367ysvL5XQ6e/Tibrdb8+bNU2JiolauXClJcjgc7WZjtbW1uuGGG2S327+z3W63d9nm23JycpSTk+N5HB8f36N6AQDm8erQZWxsrD799NMev/iiRYsUFhbmWVQiSRkZGSoqKpLb7VZ9fb12796t9PR0jRkzRg6Hw3PubePGjcrIyOiyDQAA3fHqC+P19fWaOHGikpOTNWzYMM/2rhaE7NmzR4WFhZowYYKSkpIkffM1hWXLlqm0tFROp1PBwcHKz89XWFiYJGnDhg3KzMxUTk6O4uLitGXLFknf3Pi1szYAAHQlyOriBNgdd9yh999/X9OmTdOaNWu+s7+v36cuPj5eFRUVgS4DQAeict/z6nk162b6uRL0F739TO9yRvf555+rurpajY2NcjqdXi8KAQCgr+gy6JYuXaqZM2equrpaKSkp7YIuKChI1dXVfi8QAICL0eVilIcffliHDx/WT3/6U1VXV+vo0aOeH0IOANAfeLXqsrCw0N91AADgF9w9FQBgNIIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDSCDgBgNIIOAGC0kEAXAADeiMp9z6vn1ayb6edK0N/4dUa3fPly2e12hYS0z9Pc3FxFR0fL6XSquLjYs/3gwYOaNGmSYmJiNHv2bJ0+fbrbNgAAdMWvQXfPPffoH//4R7ttO3bs0N69e1VZWamdO3dqxYoVnkBbvHix1q5dq6qqKjmdTq1fv77bNgAAdMWvQTdt2jSNGTOm3bbi4mJlZWXJZrMpIiJCKSkp2r59uxoaGlRbW6v09HRJUnZ2tmfm1lkbAAC6c8kXo9TV1cnhcHgeR0ZGyuVydbq9qzYAAHTnki9GsSyrR9u723ehgoICFRQUeB6fPHmyZ8UBAIxzyWd0Doej3WystrZWdrtddru9w+1dtfm2nJwcVVRUeH5Gjhzpx54AAPqDSx50GRkZKioqktvtVn19vXbv3q309HSNGTNGDofDc+5t48aNysjI6LINAADd8euhy4ceekjvvfee3G637Ha7Zs2apYKCApWWlsrpdCo4OFj5+fkKCwuTJG3YsEGZmZnKyclRXFyctmzZIklKS0vrtA0AAF0Jsrw9AdYPxcfHq6KiItBlAOhAT78AzhfG0dvPdC4BBgAwGkEHADAaQQcAMBpBBwAwGkEHADAaQQcAMBpBBwAwGkEHADAaQQcAMBpBBwAwGkEHADDaJb8fHQDzcB1K9GUEHQAjEb44j0OXAACjEXQAAKMRdAAAoxF0AACjEXQAAKOx6hLAd7BiESZhRgcAMBpBBwAwGkEHADAaQQcAMBqLUQDDsbDEe/yuzETQAf0MH8ZAz3DoEgBgNIIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDS+XoB+i2X2CDT+DvYPBB3QCT7EADP0q0OXH3zwgcaPH6/o6GgtXLhQbrc70CUBAPq4fhN0bW1tWrhwod5++2199tlnampq0ubNmwNdFgCgj+s3hy4//vhjjR07VvHx8ZKk7OxsFRQUKDMzM8CVAf/T08OdHB4deBjzS6/fBF1dXZ0cDofncWRkpFwuVwAr8o9L8Y+gL75HX6wJgBmCLMuyAl2EN7Zu3aqSkhJt2bJFknT48GHNmzdP+/fv9zynoKBABQUFnsdVVVWKiYm55LUG2smTJzVy5MhAlxEQA7Xv9HtgGaj9rq6u1tmzZ3vcrt/M6BwOR7sZXG1trex2e7vn5OTkKCcnx/M4Pj5eFRUVl6zGvmKg9lsauH2n3wPLQO53b/SbxSiTJ09WXV2dZ3A3btyojIyMAFcFAOjr+k3Q2Ww2vfbaa5o7d66+//3va/jw4br//vsDXRYAoI/rN4cuJenWW2/t0XT9wsOYA8lA7bc0cPtOvwcW+t0z/WYxCgAAvdFvDl0CANAbRgSdy+XSjBkzFBcXp/Hjx2vVqlWefbm5uYqOjpbT6VRxcXEAq/S9zvr9wQcfKCwsTImJiUpMTNScOXMCXKl/pKenKzExUQkJCZo7d66ampokmT3mUsf9HihjLn1z+Cok5H9nXUwf7/Mu7PdAGe+oqCiNHz/e08/y8nJJvRhzywDHjh2zPv74Y8uyLKu5udmaNm2atW3bNqu0tNS6+eabrdbWVquurs5yOBzWqVOnAlyt73TW7507d1ozZswIcHX+99///tfz5+XLl1tPPvmk8WNuWR33e6CM+a5du6z58+dbNpvNsixrQIy3ZX233wNlvK+++mrL5XK129abMTdiRnfVVVdp8uTJkqTQ0FAlJSWptrZWxcXFysrKks1mU0REhFJSUrR9+/YAV+s7nfV7oBgxYoSkb66DevbsWQUFBRk/5lLH/R4ImpublZubqxdeeMGzbSCMd0f9Hsh6M+ZGBN2FTpw4oW3btiktLW3AXDZMat9vSfrkk0+UlJSkW265RX/5y18CXJ3/zJkzR1dccYUqKyu1cuXKATPm3+63ZP6YP/PMM8rOztbo0aM92wbCeHfUb8n88T7vrrvuUmJioh5//HG1tLT0asz71dcLunPu3DnNnTtXy5cvV2xsrKwBsqD02/0eO3asPv/8c4WHh+vQoUO6/fbbtWvXLo0bNy7QpfpcSUmJzp07p+zsbG3dunXAjPm3+52RkWH0mB84cED79u3T6tWr2203fbw763dycrLR433eRx99JIfDoa+//lqZmZl64YUXejXmxszo3G635s2bp8TERM//cL25bFh/11G/w8PDFR4eLkkaP368UlJS9M9//jOQZfpVaGio7rvvPpWUlAyIMT/vwn6bPuZ79uxRRUWFxo0bp6ioKLndbkVFRWn06NFGj3dn/ZZk9Hifd37mNmzYMC1cuFB79+7t3b9xf51EvNQWLFhgZWVlWW1tbZ5t27dvb3fS0m63W01NTQGs0vc66vexY8c8j+vq6qzIyEjr8OHDgSrRL5qamqxjx45ZlmVZbrfbWrRokbVq1Srjx7yzfg+EMb/Q+UUZpo/3t53v90AY79OnT1uNjY2WZVlWa2urtXDhQuuxxx7r1Zgbcehyz549Kiws1IQJE5SUlCRJWrBggZYtW6bS0lI5nU4FBwcrPz9fYWFhAa7Wdzrrd3BwsDZs2KBBgwZJklavXq3Y2NhAlupzp06d0qxZs9Tc3Ky2tjZNmTJFeXl5uuyyy4we8876XVhYaPyYdyQtLc3o8e5McXGx8ePd0NCgjIwMtbW1ye1266abbtLjjz/eq3/jXBkFAGA0Y87RAQDQEYIOAGA0gg4AYDSCDgBgNIIOAGA0gg4AYDSCDjDU9OnTtXv37kCXAQQcQQcAMBpBB/QBv/rVr/T00097/nzFFVdIks6ePavIyEidOXNGixcv1g033KCEhAT95je/8bR9++23NWXKFCUlJenHP/6xGhsbv/P6eXl5mjdvnlpbW/XKK69owoQJmjhxopKTk3X27NlL00kgQIy4BBjQ36Wmpnouyv3hhx9q3Lhxqqio0JdffqkbbrhBa9euVXJysl555RU1NzcrJSVFt956q2w2m1599VXt2rVLgwcP1vPPP69nn31Wzz33nKRv7lm3dOlSWZalzZs3Kzg4WGvWrNGnn36qoUOHqrGxUaGhoYHsOuB3XAIM6APa2tpkt9tVXV2tG2+8UUuXLpXb7VZDQ4NGjRql119/XWfOnPFc27CpqUnr169XfX291qxZoyuvvFKS1NLSooSEBL311luaPn26Ghsbdcstt+ill17yvNfdd98tm82mmTNn6u677/bMHgFTcegS6AOCg4M1efJkz0W6U1NT9eGHH+qDDz5QamqqLMvSli1bVFZWprKyMlVXV2vOnDmyLEv33nuvZ/uhQ4f01ltveV536tSp2rt3r06ePOnZtm3bNv385z9XfX29Jk+erOrq6kB0GbhkCDqgj0hNTdW6des0ffp0XXvttTpy5Ig+++wzJSQk6I477tBLL70kt9stSaqqqlJTU5Nuu+02lZSUqK6uTpL0f//3fzpy5IjnNX/yk5/okUce0e23367Gxka1traqpqZGU6dO1ZNPPqm4uDgdPnw4IP0FLhWCDugjUlNT5XK5NH36dElSbGysrr/+egUFBSkvL0/Dhw/XxIkTNWHCBD344IM6d+6c4uLilJ+fr7vvvlsTJ07UjTfeqEOHDrV73fnz52vRokW64447PHdqTkhIUEJCgiIiIpSenh6A3gKXDufoAABGY0YHADAaQQcAMBpBBwAwGkEHADAaQQcAMBpBBwAwGkEHADAaQQcAMNr/A+ekH0gyHKdRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hist = Hist.from_seq(live[\"prglngth\"], name=\"prglngth\")\n", "hist.bar()\n", "decorate(xlabel=\"weeks\", ylabel=\"frequency\", xlim=[20, 50])" ] }, { "cell_type": "markdown", "id": "c536d409", "metadata": {}, "source": [ "By far the most common quantity is 39 weeks.\n", "The left tail is longer than the right -- early babies are common, but pregnancies seldom go past 43 weeks, and doctors often intervene if they do." ] }, { "cell_type": "markdown", "id": "c742286d", "metadata": {}, "source": [ "## Outliers\n", "\n", "Looking at histograms, it is easy to identify the shape of the distribution and the most common quantities, but rare quantities are not always visible.\n", "Before going on, it is a good idea to check for **outliers**, which are extreme quantities that might be errors in measurement and recording, or might be accurate reports of rare events.\n", "\n", "To identify outliers, the following function takes a `Hist` object and an integer `n`, and uses a slice index to select the `n` smallest quantities and their frequencies." ] }, { "cell_type": "code", "execution_count": 26, "id": "205cad0e", "metadata": {}, "outputs": [], "source": [ "def smallest(hist, n=10):\n", " return hist[:n]" ] }, { "cell_type": "markdown", "id": "2787b9b7", "metadata": {}, "source": [ "In the histogram of `prglngth`, here are the 10 smallest values." ] }, { "cell_type": "code", "execution_count": 27, "id": "aa9cc34c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "prglngth\n", "0 1\n", "4 1\n", "9 1\n", "13 1\n", "17 2\n", "18 1\n", "19 1\n", "20 1\n", "21 2\n", "22 7\n", "Name: prglngth, dtype: int64" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "smallest(hist)" ] }, { "cell_type": "markdown", "id": "8d0885b6", "metadata": {}, "source": [ "Since we selected the rows for live births, pregnancy lengths less than 10 weeks are certainly errors.\n", "The most likely explanation is that the outcome was not coded correctly.\n", "Lengths higher than 30 weeks are probably legitimate.\n", "Between 10 and 30 weeks, it is hard to be sure -- some quantities are probably errors, but some correctly record preterm births.\n", "\n", "The following function selects the largest values from a `Hist` object." ] }, { "cell_type": "code", "execution_count": 28, "id": "f6c279f3", "metadata": {}, "outputs": [], "source": [ "def largest(hist, n=10):\n", " return hist[-n:]" ] }, { "cell_type": "markdown", "id": "6c788726", "metadata": {}, "source": [ "Here are the longest pregnancy lengths in the dataset." ] }, { "cell_type": "code", "execution_count": 29, "id": "79ab04ed", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "prglngth\n", "40 1116\n", "41 587\n", "42 328\n", "43 148\n", "44 46\n", "45 10\n", "46 1\n", "47 1\n", "48 7\n", "50 2\n", "Name: prglngth, dtype: int64" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "largest(hist)" ] }, { "cell_type": "markdown", "id": "532bed4a", "metadata": {}, "source": [ "Some of these values are probably errors.\n", "Most doctors recommend induced labor if a pregnancy exceeds 41 weeks, so 50 weeks seems unlikely to be correct.\n", "But there is no clear line between values that are certainly errors and values that might be correct reports of rare events.\n", "\n", "The best way to handle outliers depends on \"domain knowledge\" -- that is, information about where the data come from and what they mean.\n", "And it depends on what analysis you are planning to perform.\n", "\n", "In this example, the motivating question is whether first babies tend to be earlier or later than other babies.\n", "So we'll try to use statistics that will not be thrown off too much by errors." ] }, { "cell_type": "markdown", "id": "ed8019a0", "metadata": {}, "source": [ "## First Babies\n", "\n", "Now we can compare the distribution of pregnancy lengths for first babies and others.\n", "We can use the `query` method to select rows that represent first babies and others." ] }, { "cell_type": "code", "execution_count": 30, "id": "0769cfcb", "metadata": {}, "outputs": [], "source": [ "firsts = live.query(\"birthord == 1\")\n", "others = live.query(\"birthord != 1\")" ] }, { "cell_type": "markdown", "id": "c75165a9", "metadata": {}, "source": [ "And make a `Hist` of pregnancy lengths for each group." ] }, { "cell_type": "code", "execution_count": 31, "id": "cc216b31", "metadata": {}, "outputs": [], "source": [ "first_hist = Hist.from_seq(firsts[\"prglngth\"], name=\"firsts\")\n", "other_hist = Hist.from_seq(others[\"prglngth\"], name=\"others\")" ] }, { "cell_type": "markdown", "id": "15a52e24", "metadata": {}, "source": [ "The following function plots two histograms side-by-side." ] }, { "cell_type": "code", "execution_count": 32, "id": "bf917d19", "metadata": {}, "outputs": [], "source": [ "def two_bar_plots(hist1, hist2, width=0.45, **options):\n", " \"\"\"Makes two back-to-back bar plots.\n", "\n", " hist1: Hist object\n", " hist2: Hist object\n", " width: width of the bars\n", " options: passed along to plt.bar\n", " \"\"\"\n", " hist1.bar(align=\"edge\", width=-width, **options)\n", " hist2.bar(align=\"edge\", width=width, **options)" ] }, { "cell_type": "markdown", "id": "8c462305", "metadata": {}, "source": [ "Here's what they look like." ] }, { "cell_type": "code", "execution_count": 33, "id": "feecd113", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAAgLElEQVR4nO3de1TUdf7H8eeAqCVjeVrLywyRIctFdFDTDFdNhSxvQZgtlZgYubJpl93CNDPTvKWbe0SrTUvTrU4S1FYnL3s0UztuJaSC1zVlwMuul0DNCwzf3x/+mg0FImQY+c7rcQ7nMJ+Z75f3h8+Rl5/v5fO1GIZhICIiYlJ+3i5ARETEkxR0IiJiago6ERExNQWdiIiYmoJORERMTUEnIiKmZuqgi4mJ8XYJIiJSR2r7N91i5vvorr32WoKDg71dhoiI1IEDBw7w448//urtGnmglqtGcHAw+fn53i5DRETqQERERK22M/WhSxEREQWdiIiYmqkPXYqINAQmvlSiViwWS53uT0EnIuIlpaWlOJ1Ozp8/7+1SripNmjTBbrcTEBBQJ/tT0ImIeInT6cRqtRIcHFzns5iGyjAMjh8/jtPppF27dnWyTwWdiIgXGIbB+fPnCQ4Oxs9Pl0v8xGKxcMMNN3Ds2DEMw6iT/wDotysi4kWayV1O5+hExLymXFdJW3H91+GDFixYQEZGBm3atKF9+/a89tprNd42NzeXgoIChgwZ4sEKa09BJyJyFQlO/7RO93dg5sAafW7BggV88sknhISEVPq+YRgYhlHpYdbc3Fw2btx41QadDl2KiPi4Rx55hP379zN06FBiYmLo378/AOvXr6dHjx4kJibSoUMHnE4nqampREZG0rFjR0aOHMmpU6eYPHkyWVlZOBwO/vrXv7Jr1y569OhBdHQ0kZGRZGdne7V/Hgs6p9NJv379CA8PJzIykgkTJgAXf3FWqxWHw4HD4SA+Pt69TVFREb169SI0NJQ+ffpw+PBh93vz58+nffv2hISEkJGR4amyRUR8zltvvUWbNm1YtWoV06dPr/De1q1beemll8jLy+P48eMcPHiQvLw8tm3bxl/+8hesVitTp04lPj6e3Nxcxo0bx8KFCxk3bhw5OTns2LGDO++800s9u8hjQdeoUSNmzZrFzp07ycnJYePGjXz00UcAdO/endzcXHJzc8nKynJv8+yzz/LQQw+xZ88e7r//fp577jkA9u7dy8KFC8nJySEnJ4dXX32V77//3lOli4jI/+vcuTPh4eEAtGvXjoMHDzJmzBg+/PBDrrnmmkq36dmzJ9OnT2fq1Kls3bqV666r5NxrPfJY0LVu3ZquXbsC0LhxY6KjoykoKKh2m08++YQRI0YAkJyc7A7GDz/8kOHDhxMYGIjVaiUxMbFCQIqIiGc0a9bM/f31119PTk4OgwYNYs2aNXTv3p3y8vLLtrn//vv57LPPaN26NWPHjmXOnDn1WfJl6uUc3YkTJ8jOziY2NhaAb7/9lujoaHr16sWqVasAOH78OM2aNaNp06bAxV9uQEAAxcXFFBYWYrfb3fsLCgrC6XTWR+kiIvL//vvf/3L+/HkGDRrEvHnzKCgo4Mcff8RqtVJSUuL+3L59+7Db7Tz66KOMHz+ef/3rX16suh6uurxw4QKJiYmMHz+esLAw2rRpw8GDB2nevDl5eXkMGDCADRs2YLVaq9xHTdeBy8jIqHD+7uTJk1dcv4iIXOR0Ohk9ejQul4vy8nKmTJlCYGAgffv2ZdasWTgcDkaNGsXp06dZsWIFjRs3pmnTpr/qVgVP8OiDV10uF8OHDycoKIh58+ZV+pkHHniAYcOGkZCQQIsWLThy5AhNmzblzJkz2Gw2Tp48yaxZszhz5gxTp04FYMKECfzmN7/h6aefrvbnR0RE6Hl0Ig2JD91HZxgGu3btIiwsTDeNX6Kq301t/6Z79NBlamoqVquVuXPnutsOHz7snqEVFRXx1VdfERkZicViYeDAgSxbtgyApUuXuu/JiI+P5/333+f06dOcOnWKlStXVrhaU0REpCoeO3S5adMmlixZQocOHYiOjgZg1KhR+Pn5sWjRIveq1NOmTSMsLAyAmTNnkpSUxJw5c2jdujXvvvsuAKGhoYwZMwaHw4FhGDzxxBN1ttiniIiYm0cPXXqbDl2KNDA6dCk0sEOXIiIi3qagExERU1PQiYiIqSnoRESkUtnZ2Wzbts39esqUKUybNs2LFdWOHtMjInI1qeyCnCvaX+0v5snOzqZ///507NixTkopKyujUaP6jx3N6EREhKysLDp16kRUVBRJSUn84x//4OOPP2bixIk4HA42b94MXFxkv1+/foSEhLgX3gfYtm0bffv2pUuXLvTs2ZPt27cDF2eBDz74IL169SI2NpajR4/St29fHA4HkZGRLFy40ON904xORMTHHTlyhLFjx7JlyxaCgoJ4/PHH3Q9S7d+/Pw899BAAq1evZvv27WzatIny8nJCQkIYO3YsN910E6mpqWRmZtK2bVu+/vprRo8ezZYtW4CLD2bdsmULgYGBzJs3j9jYWPej2+pjqUYFnYiIj9uyZQs9e/YkKCgIgJSUFFJTU4mIiLjsswMHDnQ/nicsLIwDBw7www8/kJeXx8CB/3ua+YkTJ9zfDxkyhMDAQODiY9oeeeQRTp06xYABA+jVq5cnuwYo6EREfN6lN6xXdwN7kyZN3N/7+/tTVlaGYRjceuut5ObmVrrNzx/1ExMTw6ZNm/j888+ZPn0677//vscfpq1zdCIiPq5bt25s2rSJwsJC4OITx/v27XvZ43eqEhYWxqlTp/jnP/8JXFzZJCcnp9LPHjhwgOuvv56HH36YF154oV4e4aMZnYiIj2vVqhULFixg4MCBlJeXExUVxeuvv86OHTtISUnhjTfeqPaikYCAALKzsxk3bhxPPfUUpaWlJCQkuNc5/rl169Yxd+5cAgIC8PPzq5eHsmqtSxG5emitS0FrXYqIiPwqCjoRETE1BZ2IiJiagk5ExItMfJlErdX170RXXYqIeIHFYqFJkyYcP36cG264QRek/D/DMDh+/DhNmjSps9+Jgk5ExEvsdjtOp5Njx455u5SrSpMmTbDb7XW2PwWdiIiXBAQE0K5dOx2+vERdz24VdCIiXqbDlp6li1FERMTUFHQiImJqCjoRETE1BZ2IiJiaLkYRkXoXnP5ppe0HmtZzIeITNKMTERFTU9CJiIipKehERMTUFHQiImJqHg06p9NJv379CA8PJzIykgkTJrjfS09PJyQkhNDQUDIzM93tO3bsoEuXLrRv3557772X06dP/+I2IiIiVfFo0DVq1IhZs2axc+dOcnJy2LhxIx999BFr165l8+bN7N69m3Xr1vHkk0+6A23MmDHMmDGDvXv3Ehoayty5cwGq3UZERKQqHg261q1b07VrVwAaN25MdHQ0BQUFZGZmMnLkSPz9/Wnbti0xMTGsXr2ao0ePUlBQQFxcHAApKSnumVtV24iIiFSn3s7RnThxguzsbGJjYyksLKzwCIagoCCcTmeV7UC174mIiFSlXm4Yv3DhAomJiYwfP56wsLAqH0lR3aMqavIYi4yMDDIyMtyvT548+euLFRERU/H4jM7lcpGUlITD4eDpp58G/vewwZ8UFBRgs9mw2WyVtle3zc+lpaWRn5/v/mrRooUnuyYiIg2Ax4MuNTUVq9XqvqgEICEhgbfffhuXy0VRUREbN24kLi6OVq1aYbfb3efeFi9eTEJCQrXbiIiIVMejhy43bdrEkiVL6NChA9HR0QCMGjWKcePGsWbNGkJDQ/Hz82PevHlYrVYAFi1aRHJyMmlpaYSHh7NixQoAYmNjq9xGRESkKhbDxM9wj4iIID8/39tliMglql7UOenyxinFHq5GGora/k3XyigiImJqCjoRETE1BZ2IiJiagk5ERExNQSciIqamoBMREVNT0ImIiKkp6ERExNQUdCIiYmoKOhERMTUFnYiImJqCTkRETE1BJyIipqagExERU1PQiYiIqSnoRETE1BR0IiJiago6ERExNQWdiIiYWo2C7sUXX6SwsNDTtYiIiNS5GgVd48aN6du3L/fccw9ZWVm4XC5P1yUiIlInahR0EyZMYM+ePfzpT3/igw8+ICQkhPT0dPbv3+/p+kRERK7IrzpHZ7PZaNu2LRaLhSNHjjBo0CCef/55T9UmIiJyxRrV5EPvvPMOb775Jj/++COPPfYY27dvp1mzZpSWlhIaGspLL73k6TpFRERqpUZBt2HDBubOnUvXrl0rtAcEBPDOO+94pDAREZG6UKNDly1btrws5J577jkAevbsWfdViYiI1JEaBd3nn39+Wdtnn31W58WIiIjUtWoPXb7zzjssW7aMf//738TFxbnbS0pKuPHGGz1enIiIyJWqNuh69eqF3W7nqaeeYuLEie52q9VKp06dPF6ciIjIlao26G6++WZuvvlmtm7dWl/1iIiI1Klqz9GNHTsWgNjYWOLi4i77+iXjx4/HZrPRqNH/8nT9+vVYrVYcDgcOh4P4+Hj3e0VFRfTq1YvQ0FD69OnD4cOH3e/Nnz+f9u3bExISQkZGxq/uqIiI+KZqZ3QpKSkATJo0qVY7HzZsGBMmTMBms1Vo7969O2vXrr3s888++ywPPfQQqampLFy4kOeee4633nqLvXv3snDhQnJycjAMg86dO3PPPfdwyy231KouERHxHdUGXZcuXQDo3bt3rXb+a289+OSTT3jzzTcBSE5Odgfshx9+yPDhwwkMDAQgMTGRrKwsnnrqqVrVJSIivqPaoIuNjcVisVT5/urVq2v1Q7/99luio6OxWq1MnDiRu+66i+PHj9OsWTOaNm0KQLNmzQgICKC4uJjCwkI6duzo3j4oKIg9e/bU6meLiIhvqTboanvIsjqdO3fm4MGDNG/enLy8PAYMGMCGDRuwWq1VbmMYRo32nZGRUeH83cmTJ6+4XhERadiqDbraHrKsTvPmzd3fR0ZGEhMTw9atW0lISODMmTOcO3eOpk2bcubMGS5cuMB1112H3W7H6XS6tysoKLjsvB9AWloaaWlp7tcRERF1Xr+IiDQsHr3qsjKHDx92z9CKior46quviIyMxGKxMHDgQJYtWwbA0qVLGTJkCADx8fG8//77nD59mlOnTrFy5coKV2uKiIhUxaNXXT722GN8+umnuFwubDYbQ4cOJTw8nEWLFhEQEADAtGnTCAsLA2DmzJkkJSUxZ84cWrduzbvvvgtAaGgoY8aMweFwYBgGTzzxBO3atatVTSIi4lssRg1PgJWVlbF3714A2rdvX+HeuKtVREQE+fn53i5DRC4RnP5ppe0HmiZd3jil2MPVSENR27/pNUqr9evXM2LECFq2bIlhGJw4cYKlS5d65ByeiIhIXapR0P3xj3/k448/xuFwAPDdd9/x4IMPsmPHDk/WJiIicsVq9JiegIAAd8gBdOrUyX2OTURE5GpW7Yzu0KFDANx1112kp6eTnJyMxWJh2bJl3H333fVSoIiIyJWoNuhiYmKwWCzu2wHef/9993sWi4WXX37Zs9WJiIhcoWqD7vvvv6+vOkRERDyixvcIlJSUsG/fPs6dO+duu+OOOzxSlIiISF2pUdCtWLGCF198kSNHjhAaGsp3331Ht27d2LRpk6frExERuSI1uupy9uzZfPvtt7Rr145vvvmGjRs36llwIiLSINT49gKr1Up5eTlw8cGpuodOREQaghodugwMDOTcuXPcdtttPP7447Rq1Qp/f39P1yYiInLFajSjW758ORaLhfnz59OyZUtOnDjBypUrPV2biIjIFavRjM5ms1FWVsb+/fsZNmxYg1nUWURERIs6i4iIqWlRZxERMTUt6iwiIqamRZ1FRMTUtKiziIiYmhZ1FhERU6vxPQKrVq1i3bp1APTr14/Y2FiPFSUiIlJXanQxyksvvcTkyZNp3bo1bdq0YfLkyUyfPt3TtYmIiFyxGs3oPvjgA77++muaNGkCQGpqKt26dWPixIkeLU5ERORK1WhGZxgGfn7/+6ifn5/7AhUREZGrWY1mdPHx8dx55508+OCDAPz973/nvvvu82hhIiIidaFGQTd16lS6du3K+vXrsVgsPPPMMwwePNjTtYmIiFyxXww6l8tFVFQU+fn5DBkypD5qEhERqTO/eI7O39+foKAgjh07Vh/1iIiI1KkaHboMCAggMjKS/v3706xZM3f7G2+84bHCRERE6kKNgi4xMZHExERP1yIiIlLnahR0ycnJAJw9exaAa665pkY7Hz9+PJmZmRw5coSysjJ3e3p6OitXrsTPz48ZM2a4r+DcsWMHycnJlJSUEBkZyfLlywkMDKx2GxERkerU6D66vLw8brvtNux2O3a7nW7dupGXl/eL2w0bNoxvvvmmQtvatWvZvHkzu3fvZt26dTz55JOcPn0agDFjxjBjxgz27t1LaGgoc+fO/cVtREREqlOjoEtOTub555/n2LFjHDt2jMmTJ7tnedXp2bMnrVq1qtCWmZnJyJEj8ff3p23btsTExLB69WqOHj1KQUEBcXFxAKSkpJCZmVntNiIiIr+kRkF34cKFCrcWDBo0iNLS0lr9wMLCQux2u/t1UFAQTqezyvbqthEREfklNQq6wYMH8/rrr3P27FnOnj3LG2+8Uet76qpaOqy6JcVqutxYRkYGERER7q+TJ0/WqkYRETGPGl2MMnv2bFwuF3/4wx/cbf7+/sycOROLxcKFCxdq/APtdnuF2VhBQQHdunXDZrNd1m6z2ard5lJpaWmkpaW5X0dERNS4LhERMacazehKS0spLy+v8FVaWkppaemvCjmAhIQE3n77bVwuF0VFRWzcuJG4uDhatWqF3W53n3tbvHgxCQkJ1W4jIiLyS2r84NXaeOyxx/j0009xuVzYbDaGDh1KRkYGa9asITQ0FD8/P+bNm4fVagVg0aJFJCcnk5aWRnh4OCtWrAAgNja2ym1ERESqYzFM/LydiIgI8vPzvV2GiFwiOP3TStsPNE26vHFKsYerkYaitn/Ta3ToUkREpKFS0ImIiKkp6ERExNQUdCIiYmoKOhERMTUFnYiImJqCTkRETE1BJyIipqagExERU1PQiYiIqSnoRETE1BR0IiJiago6ERExNQWdiIiYmoJORERMTUEnIiKmpqATERFTU9CJiIipKehERMTUFHQiImJqCjoRETE1BZ2IiJiagk5ERExNQSciIqamoBMREVNT0ImIiKkp6ERExNQaebsAEZFam3JdFe3F9VuHXNU0oxMREVNT0ImIiKl5LeiCg4OJjIzE4XDgcDjYvn07AOnp6YSEhBAaGkpmZqb78zt27KBLly60b9+ee++9l9OnT3urdBERaUC8eo5u1apV2Gw29+u1a9eyefNmdu/ezZEjR+jRowd33XUXgYGBjBkzhhkzZhAXF8czzzzD3LlzeeGFF7xYvYjUl+D0TyttP9C0nguRBumqOnSZmZnJyJEj8ff3p23btsTExLB69WqOHj1KQUEBcXFxAKSkpFSY7YmIiFTFq0E3ePBgHA4HEydOpLS0lMLCQux2u/v9oKAgnE5nle0iIiK/xGuHLr/88kvsdjtnzpwhOTmZV155BcMwKv1sVe2XysjIICMjw/365MmTdVKriIg0XF6b0f00Q2vWrBmjR49m8+bN2O32CjO1goICbDYbNput0vZLpaWlkZ+f7/5q0aKF5zsiIiJXNa8E3ZkzZygpKQHA5XKRmZlJx44dSUhI4O2338blclFUVMTGjRuJi4ujVatW2O12Vq9eDcDixYtJSEjwRukiItLAeOXQ5dGjR0lISKC8vByXy0WPHj2YOHEi1157LWvWrCE0NBQ/Pz/mzZuH1WoFYNGiRSQnJ5OWlkZ4eDgrVqzwRukiItLAeCXo2rVrR25ubqXvzZ49m9mzZ1/W3rFjR3JycjxcmYiImM1VdXuBiIhIXVPQiYiIqSnoRETE1BR0IiJiago6ERExNT14VURMqbKFoA/MHOiFSsTbNKMTERFT04xORDxjynVVtBfXbx3i8zSjExERU1PQiYiIqSnoRETE1BR0IiJiaroYRUSuWKWX8jf1QiEildCMTkRETE0zOhGpmcpuF9CtAtIAaEYnIiKmphmdiPgO3cTukxR0IlJBZReWgPkvLqmy31ofs8HToUsRETE1BZ2IiJiaDl2KmJweVyO+TkEn0oBUff4s6fJGXWAhAijoRHyTrj4UH6JzdCIiYmqa0YmIVEez3wZPMzoRETE1zehERGpJV7Q2DAo6aZC0ioWI1JSCTsylPlbY1yr+Uh2d07vqNKigW79+PWlpaZw/f54+ffrw+uuv4+/v7+2yxKR8dc1HEbNpMBejlJeXM3r0aD744AP27dtHSUkJy5cv93ZZIiJylWswM7qvv/6aNm3aEBERAUBKSgoZGRkkJyd7uTK5lK+eP/tVq5YATCmu/GKGaj4vDZtWtvGOBhN0hYWF2O129+ugoCCcTqcXK2qYvPoPrZpzW57+g1+bEBIRc7AYhmF4u4iaWLlyJVlZWaxYsQKAnTt3kpSURE5OjvszGRkZZGRkuF/v3buX9u3b13ut3nby5ElatGjh7TK8wlf7rn77Fl/t9/79+zl37tyv3q7BzOjsdnuFGVxBQQE2m63CZ9LS0khLS3O/joiIID8/v95qvFr4ar/Bd/uufvsWX+53bTSYi1G6du1KYWGhe3AXL15MQkKCl6sSEZGrXYMJOn9/f958800SExO59dZbCQwM5OGHH/Z2WSIicpVrMIcuAfr27furpus/P4zpS3y13+C7fVe/fYv6/es0mItRREREaqPBHLoUERGpDVMEndPppF+/foSHhxMZGcmECRPc76WnpxMSEkJoaCiZmZlerNIzqur7+vXrsVqtOBwOHA4H8fHxXq607sXFxeFwOIiKiiIxMZGSkhLA/GNeWb99Ybx/kpaWRqNG/zvrYvbx/snP++0r4x0cHExkZKS7n9u3bwdqMeaGCRw6dMj4+uuvDcMwjPPnzxs9e/Y0srOzjTVr1hi/+93vjLKyMqOwsNCw2+3GqVOnvFxt3aqq7+vWrTP69evn5eo864cffnB/P378eOOFF17wiTGvrN++MN6GYRgbNmwwRowYYfj7+xuGYfjEeBvG5f32lfG++eabDafTWaGtNmNuihld69at6dq1KwCNGzcmOjqagoICMjMzGTlyJP7+/rRt25aYmBhWr17t5WrrVlV99wXXXXdxpZXy8nLOnTuHxWLxiTGvrN++4Pz586Snp/PKK6+423xhvCvrty+rzZibIuh+7sSJE2RnZxMbG+tzy4b9vO8A3377LdHR0fTq1YtVq1Z5uTrPiI+P58Ybb2T37t08/fTTPjPml/YbzD/eU6dOJSUlhZYtW7rbfGG8K+s3mH+8fzJ48GAcDgcTJ06ktLS0VmPeoG4v+CUXLlwgMTGR8ePHExYWhuFDF5Re2vc2bdpw8OBBmjdvTl5eHgMGDGDDhg3ccsst3i61TmVlZXHhwgVSUlJYuXKlz4z5pf1OSEgw9Xhv27aNLVu2MG3atArtZh/vqvrduXNnU4/3T7788kvsdjtnzpwhOTmZV155pVZjbpoZncvlIikpCYfD4f4fbk2WDTODyvrevHlzmjdvDkBkZCQxMTFs3brVm2V6TOPGjXnggQfIysrymTGHiv02+3hv2rSJ/Px8brnlFoKDg3G5XAQHB9OyZUtTj3dV/QZMPd4/+Wnm1qxZM0aPHs3mzZtr92/cUycR69uoUaOMkSNHGuXl5e621atXVzhpabPZjJKSEi9W6RmV9f3QoUPu14WFhUZQUJCxc+dOb5VY50pKSoxDhw4ZhmEYLpfLSE1NNSZMmGD6Ma+q32Yf70v9dFGG2cf7Uj/12xfG+/Tp00ZxcbFhGIZRVlZmjB492njuuedqNeamOHS5adMmlixZQocOHYiOjgZg1KhRjBs3jjVr1hAaGoqfnx/z5s3DarV6udq6VVXf/fz8WLRoEQEBAQBMmzaNsLAwb5Zap06dOsXQoUM5f/485eXldO/enUmTJnHttdeaesyr6veSJUtMPd5ViY2NNfV4VyUzM9P043306FESEhIoLy/H5XLRo0cPJk6cWKt/41oZRURETM005+hEREQqo6ATERFTU9CJiIipKehERMTUFHQiImJqCjoRETE1BZ2ISfXp04eNGzd6uwwRr1PQiYiIqSnoRK4Cr776Ki+++KL7+xtvvBGAc+fOERQUxNmzZxkzZgzdunUjKiqKBQsWuLf94IMP6N69O9HR0dx3330UFxdftv9JkyaRlJREWVkZr732Gh06dKBTp0507tyZc+fO1U8nRbzEFEuAiTR0vXv3di/I/cUXX3DLLbeQn5/Pf/7zH7p168aMGTPo3Lkzr732GufPnycmJoa+ffvi7+/P3/72NzZs2ECTJk2YM2cOL7/8MrNmzQIuPrNu7NixGIbB8uXL8fPzY/r06ezZs4drrrmG4uJiGjdu7M2ui3iclgATuQqUl5djs9nYv38/t99+O2PHjsXlcnH06FFuuOEGli5dytmzZ91rG5aUlDB37lyKioqYPn06N910EwClpaVERUXx3nvv0adPH4qLi+nVqxfz5893/6whQ4bg7+/PwIEDGTJkiHv2KGJWOnQpchXw8/Oja9eu7gW6e/fuzRdffMH69evp3bs3hmGwYsUKcnNzyc3NZf/+/cTHx2MYBsOHD3e35+Xl8d5777n3e8cdd7B582ZOnjzpbsvOzubPf/4zRUVFdO3alf3793ujyyL1RkEncpXo3bs3M2fOpE+fPvz2t79l165d7Nu3j6ioKO6++27mz5+Py+UCYO/evZSUlNC/f3+ysrIoLCwE4Mcff2TXrl3uff7+97/n8ccfZ8CAARQXF1NWVsaBAwe44447eOGFFwgPD2fnzp1e6a9IfVHQiVwlevfujdPppE+fPgCEhYVx2223YbFYmDRpEoGBgXTq1IkOHTrw6KOPcuHCBcLDw5k3bx5DhgyhU6dO3H777eTl5VXY74gRI0hNTeXuu+92P6k5KiqKqKgo2rZtS1xcnBd6K1J/dI5ORERMTTM6ERExNQWdiIiYmoJORERMTUEnIiKmpqATERFTU9CJiIipKehERMTUFHQiImJq/wcADXGkthM7bgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "two_bar_plots(first_hist, other_hist)\n", "decorate(xlabel=\"weeks\", ylabel=\"probability\", xlim=[20, 50])" ] }, { "cell_type": "markdown", "id": "40217ecf", "metadata": {}, "source": [ "There is no obvious difference in the shape of the distributions or in the outliers.\n", "It looks like more of the non-first babies are born during week 39, but there are more non-first babies in the dataset, so we should not compare the counts directly." ] }, { "cell_type": "code", "execution_count": 34, "id": "1034565e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(4413, 4735)" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "firsts[\"prglngth\"].count(), others[\"prglngth\"].count()" ] }, { "cell_type": "markdown", "id": "18635f9f", "metadata": {}, "source": [ "Comparing the means of the distributions, it looks like first babies are a little bit later on average." ] }, { "cell_type": "code", "execution_count": 35, "id": "3c2861b7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(38.60095173351461, 38.52291446673706)" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "first_mean = firsts[\"prglngth\"].mean()\n", "other_mean = others[\"prglngth\"].mean()\n", "first_mean, other_mean" ] }, { "cell_type": "markdown", "id": "e5891501", "metadata": {}, "source": [ "But the difference is only 0.078 weeks, which is about 13 hours." ] }, { "cell_type": "code", "execution_count": 36, "id": "d5a1b8d1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.07803726677754952" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "diff = first_mean - other_mean\n", "diff" ] }, { "cell_type": "code", "execution_count": 37, "id": "8be38f09", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "13.11026081862832" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "diff * 7 * 24" ] }, { "cell_type": "markdown", "id": "4a3a536f", "metadata": {}, "source": [ "Now, there are three possible implications of this apparent difference:\n", "\n", "* There might be a consistent difference in pregnancy length between first babies and others.\n", "\n", "* The apparent difference we see in this dataset might be the result of some other difference between first babies and others.\n", "\n", "* The apparent difference might be the result of random variation between the two groups.\n", "\n", "In later chapters, we will consider these possible explanations more carefully, but for now we will take this result at face value: in this dataset, there is a small difference in pregnancy length between these groups." ] }, { "cell_type": "markdown", "id": "dcd38712", "metadata": {}, "source": [ "## Effect Size\n", "\n", "A difference like this is sometimes called an \"effect\".\n", "There are several ways to quantify the magnitude of an effect.\n", "The simplest is to report the difference in absolute terms -- in this example, the difference is 0.78 weeks.\n", "\n", "Another is to report the difference in relative terms.\n", "For example, we might say that first pregnancies are 0.2% longer than others, on average." ] }, { "cell_type": "code", "execution_count": 38, "id": "5350ffef", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.20257363145493953" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "diff / other_mean * 100" ] }, { "cell_type": "markdown", "id": "3b656e71", "metadata": {}, "source": [ "One other option is a **standardized** effect size which is a statistic intended to quantify the size of an effect in a way that is comparable between different quantities and different groups.\n", "\n", "Standardizing means we express the difference as a multiple of the standard deviation.\n", "So we might be tempted to write something like this." ] }, { "cell_type": "code", "execution_count": 39, "id": "36c39f37", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.028877623375210403" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "diff / live[\"prglngth\"].std()" ] }, { "cell_type": "markdown", "id": "09162cf0", "metadata": {}, "source": [ "But notice that we used both groups to compute the standard deviation.\n", "If the groups are substantially different, the standard deviation when we put them together is larger than in either group, which might make the effect size seem small.\n", "\n", "An alternative is to use the standard deviation of just one group, but it's not clear which. So the next idea might be to take the average of the two standard deviations, but if the groups are different sizes, that might give more weight to one group than it should get.\n", "\n", "One solution is to use **pooled standard deviation**, which is the square root of pooled variance, which is the weighted sum of the variances in the groups.\n", "To compute it, we'll start with the variances." ] }, { "cell_type": "code", "execution_count": 40, "id": "7020bf5a", "metadata": {}, "outputs": [], "source": [ "group1, group2 = firsts[\"prglngth\"], others[\"prglngth\"]" ] }, { "cell_type": "code", "execution_count": 41, "id": "2f2b5b4e", "metadata": {}, "outputs": [], "source": [ "v1, v2 = group1.var(), group2.var()" ] }, { "cell_type": "markdown", "id": "3d92b828", "metadata": {}, "source": [ "And here is the weighted sum, with the group sizes as weights." ] }, { "cell_type": "code", "execution_count": 42, "id": "abc6ca74", "metadata": {}, "outputs": [], "source": [ "n1, n2 = group1.count(), group2.count()\n", "pooled_var = (n1 * v1 + n2 * v2) / (n1 + n2)" ] }, { "cell_type": "markdown", "id": "a533d4ef", "metadata": {}, "source": [ "Finally, here is the pooled standard deviation." ] }, { "cell_type": "code", "execution_count": 43, "id": "03fe9601", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2.7022108144953862" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sqrt(pooled_var)" ] }, { "cell_type": "markdown", "id": "ea8df9c2", "metadata": {}, "source": [ "The pooled standard deviation is between the standard deviations of the groups." ] }, { "cell_type": "code", "execution_count": 44, "id": "b36d6897", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2.7919014146687204, 2.6158523504392375)" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "firsts[\"prglngth\"].std(), others[\"prglngth\"].std()" ] }, { "cell_type": "markdown", "id": "72c5526f", "metadata": {}, "source": [ "A standardized effect size that uses pooled standard deviation is called Cohen's effect size. Here's a function that computes it." ] }, { "cell_type": "code", "execution_count": 45, "id": "0cecadaa", "metadata": {}, "outputs": [], "source": [ "def cohen_effect_size(group1, group2):\n", " \"\"\"Computes Cohen's effect size for two groups.\n", "\n", " group1: Series\n", " group2: Series\n", "\n", " returns: float\n", " \"\"\"\n", " diff = group1.mean() - group2.mean()\n", "\n", " v1, v2 = group1.var(), group2.var()\n", " n1, n2 = group1.count(), group2.count()\n", " pooled_var = (n1 * v1 + n2 * v2) / (n1 + n2)\n", "\n", " return diff / np.sqrt(pooled_var)" ] }, { "cell_type": "markdown", "id": "77d764af", "metadata": {}, "source": [ "And here's the effect size for the difference in mean pregnancy lengths." ] }, { "cell_type": "code", "execution_count": 46, "id": "e6e19a82", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.028879044654449834" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cohen_effect_size(firsts[\"prglngth\"], others[\"prglngth\"])" ] }, { "cell_type": "markdown", "id": "bd8c1b97", "metadata": {}, "source": [ "In this example, the difference is 0.029 standard deviations, which is small.\n", "To put that in perspective, the difference in height between men and women is about 1.7 standard deviations." ] }, { "cell_type": "markdown", "id": "73d554e6", "metadata": {}, "source": [ "## Reporting results\n", "\n", "We have seen several ways to describe the difference in pregnancy length (if there is one) between first babies and others.\n", "How should we report these results?\n", "\n", "The answer depends on who is asking the question.\n", "A scientist might be interested in any (real) effect, no matter how small.\n", "A doctor might only care about effects that are **clinically significant** -- that is, differences that affect treatment decisions.\n", "A pregnant woman might be interested in results that are relevant to her, like the probability of delivering early or late.\n", "\n", "How you report results also depends on your goals.\n", "If you are trying to demonstrate the importance of an effect, you might choose summary statistics that emphasize differences.\n", "If you are trying to reassure a patient, you might choose statistics that put the differences in context.\n", "\n", "Of course your decisions should also be guided by professional ethics.\n", "It's OK to be persuasive -- you *should* design statistical reports and visualizations that tell a story clearly.\n", "But you should also do your best to make your reports honest, and to acknowledge uncertainty and limitations." ] }, { "cell_type": "markdown", "id": "9d070d5e", "metadata": {}, "source": [ "## Glossary\n", "\n", "- **distribution**: The quantities that appear in a sample and the frequency of each.\n", "\n", "- **histogram**: A mapping from quantities to frequencies, or a graph that shows this mapping.\n", "\n", "- **frequency**: The number of times a quantity appears in a sample.\n", "\n", "- **mode**: The most frequent quantity in a sample, or one of the most frequent quantities.\n", "\n", "- **normal distribution**: An idealization of a bell-shaped distribution; also known as a Gaussian distribution.\n", "\n", "- **uniform distribution**: A distribution in which all quantities have the same frequency.\n", "\n", "- **tail**: The part of a distribution at the high and low extremes.\n", "\n", "- **central tendency**: A characteristic of a sample or population; intuitively, it is an average or typical quantity.\n", "\n", "- **outlier**: A quantity far from the central tendency.\n", "\n", "- **spread**: A measure of how spread out the quantities in a distribution are.\n", "\n", "- **summary statistic**: A statistic that quantifies some aspect of a distribution, like central tendency or spread.\n", "\n", "- **variance**: A summary statistic often used to quantify spread.\n", "\n", "- **standard deviation**: The square root of variance, also used as a measure of spread.\n", "\n", "- **effect size**: A summary statistic intended to quantify the size of an effect like a difference between groups.\n", "\n", "- **clinically significant**: A result, like a difference between groups, that is relevant in practice." ] }, { "cell_type": "markdown", "id": "65b9f818", "metadata": { "collapsed": true }, "source": [ "## Exercises\n", "\n", "For the exercises in this chapter, we'll load the NSFG respondent file, which contains one row for each respondent." ] }, { "cell_type": "code", "execution_count": 47, "id": "6261b596", "metadata": { "tags": [ "remove-print" ] }, "outputs": [], "source": [ "download(\"https://github.com/AllenDowney/ThinkStats/raw/v3/data/2002FemResp.dct\")\n", "download(\"https://github.com/AllenDowney/ThinkStats/raw/v3/data/2002FemResp.dat.gz\")" ] }, { "cell_type": "markdown", "id": "0f0c3861", "metadata": { "tags": [ "remove-print" ] }, "source": [ "The codebook for this dataset is at ." ] }, { "cell_type": "markdown", "id": "624f6acc", "metadata": {}, "source": [ "The `nsfg.py` module provides a function that reads the respondent file and returns a `DataFrame`." ] }, { "cell_type": "code", "execution_count": 48, "id": "6dffc3cb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(7643, 3092)" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from nsfg import read_fem_resp\n", "\n", "resp = read_fem_resp()\n", "resp.shape" ] }, { "cell_type": "markdown", "id": "b00b5a1e", "metadata": {}, "source": [ "This `DataFrame` contains 3092 columns, but we'll use just a few of them.\n", "\n", "We'll start with `totincr`, which records the total income for the respondent's family, encoded with a value from 1 to 14.\n", "You can read the codebook to see what income level each value represents." ] }, { "cell_type": "markdown", "id": "de2d533c", "metadata": {}, "source": [ "Make a `Hist` object to represent the distribution of this variable and plot it as a bar chart." ] }, { "cell_type": "code", "execution_count": 49, "id": "2c49d30c", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD+CAYAAABMScBLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAAhyUlEQVR4nO3de1RU5f4G8GcGUEsJieUFmUFMHGXAERDLxKzlhZN5RypDDRISaloZ2lLsdlp2zkExOJkhnY4gmaidxMiOrQIKMqTMDDIl0ZbazGCaGiqQgAzv7w9/7SMKOI7AHrbPZ61Zul/25fuCzOM7+/KqhBACRERECqWWuwAiIqKOxKAjIiJFY9AREZGiMeiIiEjRGHRERKRoDDoiIlI0Bh0RESmac0fufNGiRcjJycHJkyfR2NgIAMjOzkZycjKEEOjWrRuSk5Mxfvx4AEBlZSUee+wxnDx5EgMGDMCWLVvg6ekJAFizZg3eeustCCGQkJAAo9F43ePfcccd0Gg0HddBIiJyCBaLBRcuXGjxa6qOvGG8uLgYvr6+0Gg0UtCVlJRg6NCh8PDwwI8//oiJEyfi119/hVqtxrx58zBu3DgsXLgQ69atw969e7FhwwYcOXIEU6dOxb59+yCEQHBwMPLy8jBo0KA2j6/X61FeXt5R3SMiIgfR1vt9hwbdn5ydnaWgu5IQAu7u7jCbzXB1dUXv3r1x8uRJ9OjRA7W1tdBqtfj999+xatUq1NbWYsWKFQCA5cuXo0+fPli8eHGbx2XQERHdGtp6v5f1HN3WrVsxfPhwuLq64uzZs+jZsyd69OgBAOjZsydcXFxw/vx5WCwWaLVaaTtvb2+YzeZr9peWlga9Xi+9qqqqOq0vRETkmDr0HF1bSktLkZiYiIKCAgCXR3etsXXQaTQam5270+v1ba7Px3w2p1Kp5C6BiKjdyRJ0hw8fxuzZs7F161YMGTIEAODh4YHa2lrU1dVJH102NDTAzc0NWq222QjOZDLZfZFJU1MTTp8+jfPnz8NqtbZLf5Sie/fu0Gq1cHFxkbsUIqJ20+lBZ7FYMGXKFKSnp+Pee++V2lUqFaZMmYKNGzdi4cKFePfddzF9+nQAwKxZszBt2jQsXboUQghs27YNn332mV3HN5vNUKlUGDhwIFxcXDiK+X9CCJw9exZmsxl33XWX3OUQEbWbDg26uLg47Ny5E1arFRqNBjNmzEBDQwN+++03LFu2DMuWLQMA5ObmwsfHBytXrkRkZCRWr14NT09PbNmyBQCg0+kQHx+PwMBACCHw3HPP2fVmLITAH3/8AZ1OBycnp3bta1enUqng4eGBM2fOQAjB/wAQkWJ0ylWXcrn6KhwhBA4dOoRhw4bxjbwF/P4QUVfV1lWXsl2MQkREXZNP4s523d/xlVPadX9XY9BBvh/aihUr8Morr7S5TlFREdRqNcaNGwcA2LFjB8rKyq67HRERXcZnXcrozxvg21JUVIRdu3ZJy9OnT2+3kGvpJn4iIqVh0MkkISEBVqsVgYGBmDhxIoqLixESEgKDwYApU6bg5MmTqKiowNtvv420tDQEBgZi27ZtyMrKQmxsLAAgKysLM2bMwNSpU6HT6fD4449L+z9+/DgmT54Mg8GAESNGoKioCMDlp9S89NJLCAoKwvbt2+XoOhFRp+JHlzL55z//ibVr16KsrAz19fXw9fXFRx99hODgYKSkpGDRokV4//33ER8fL4UTcDncrvTdd99h//79cHNzQ0hICHbv3o3Q0FDMnTsX8fHxmD9/PqxWK6qrqwEAVqsVd911F0pLSzu7y0REsuCIzgEcOnQI/fv3R3BwMAAgJiYGhYWFNm07fvx4eHh4wNnZGUFBQTh27Biqq6tRUVGB+fPnAwCcnJzQu3dvaZvIyMh27wMRkaNi0DmAqy/lv5FL+7t37y793cnJSTrv1tpdI05OTtLzRImIbgUMOhndfvvtqK2txdChQ3Hy5EmUlZUBADIzM6U5+lxdXVudY6k1rq6uGDZsGN577z0Alz+uPHfuXHuWTkTUZfAcHTr+Ho7WPPPMMxg5ciQ0Gg02b96M2NhYNDQ0QKPRIDMzEwAwY8YMzJ49G/n5+XjxxRdt3vemTZsQHx+P1atXQ61WY82aNbj//vs7qitERA6LT0YhCb8/RGQLR7xh3GHnoyMiIupoDDoiIlK0WzLompqa5C7BISn4U2wiuoXdUhejqFQq3H777aisrES/fv04H90V/pyPrnv37vyeEJGi3FJBBwBarRanT5/GL7/8whnGr/LnDONEREpyywWdWq1Gv3790K9fP35UdxWO5IhIiW65oLsS39iJiJTvlrwYhYiIbh0MOiIiUjQGHRERKRqDjoiIFI1BR0REisagIyIiRWPQERGRojHoiIhI0To06BYtWgSNRgNn5+b3pScmJsLX1xc6nQ45OTlS+4EDBzBy5EgMGTIEM2fORE1NzXW3ISIiakuHBt3DDz+M7777rllbQUEBSkpKUFFRgcLCQiQkJEiBFh8fj6SkJBw5cgQ6nQ4pKSnX3YaIiKgtHRp0Y8eORf/+/Zu15eTkIDo6Gk5OTvDy8kJoaCjy8vJw6tQpmEwmhIWFAQBiYmKkkVtr2xAREV1Pp5+js1gszZ6Q7+3tDbPZ3Gp7W9tcLS0tDXq9XnpVVVV1YE+IiKgr6PSga23GgLZmErB1lgGj0Yjy8nLp5e7ubleNRESkHJ0edFqtttlozGQyQaPRQKPRtNje1jZERETX0+lBFx4ejqysLFitVlRWVqK4uBhhYWHo378/tFqtdO4tIyMD4eHhbW5DRER0PR06H11cXBx27twJq9UKjUaDGTNmIC0tDfn5+dDpdFCr1UhNTYWrqysAID09HVFRUTAajfDz80N2djYAYNKkSa1uQ0RE1BaVUPA023q9HuXl5XKXQUSkKD6JO9t1f8dXTrnpfbT1fs8noxARkaIx6IiISNEYdEREpGgMOiIiUjQGHRERKRqDjoiIFI1BR0REisagIyIiRWPQERGRojHoiIhI0Rh0RESkaAw6IiJSNAYdEREpGoOOiIgUjUFHRESKxqAjIiJFY9AREZGiMeiIiEjRGHRERKRoDDoiIlI0Bh0RESkag46IiBSNQUdERIrGoCMiIkVj0BERkaLJFnSbNm2CwWBAYGAg7rvvPlRUVAAAEhMT4evrC51Oh5ycHGn9AwcOYOTIkRgyZAhmzpyJmpoauUonIqIuRJag++OPP7Bo0SJ88cUXKCsrw9y5c/HSSy+hoKAAJSUlqKioQGFhIRISEqRAi4+PR1JSEo4cOQKdToeUlBQ5Sicioi5GlqBramqCEEIKsfPnz8PT0xM5OTmIjo6Gk5MTvLy8EBoairy8PJw6dQomkwlhYWEAgJiYmGajPSIiotY4y3HQXr164a233kJAQADc3Nzg5uaGr7/+GvPmzUN4eLi0nre3N8xmMywWC7Ra7TXtV0tLS0NaWpq0XFVV1bEdISIihyfLiO7SpUtYt24d9u7di8rKSkRERGDZsmUQQrS4fmvtVzMajSgvL5de7u7u7Vk2ERF1QbIEXVlZGYQQ8PPzAwDMmTMHJSUl0Gq1zUZqJpMJGo0GGo2mxXYiIqLrkSXoNBoNKioqUFlZCQDIz8+HXq9HeHg4srKyYLVaUVlZieLiYoSFhaF///7QarXIy8sDAGRkZDT7iJOIiKg1spyj8/T0xMqVKzFp0iS4uLigT58+yMzMhLe3N/Lz86HT6aBWq5GamgpXV1cAQHp6OqKiomA0GuHn54fs7Gw5Sicioi5GJWw9AdYF6fV6lJeXy10GEZGi+CTubNf9HV855ab30db7PZ+MQkREisagIyIiRWPQERGRojHoiIhI0Rh0RESkaAw6IiJSNAYdEREpGoOOiIgUjUFHRESKxqAjIiJFY9AREZGiMeiIiEjRGHRERKRoDDoiIlI0m4IuLCzMpjYiIiJHY1PQnTlzptnyxYsXYTabO6QgIiKi9tRm0L322mtwcXFBWVkZunXrhm7dusHFxQWenp6YPXt2Z9VIRERktzaD7uWXX8alS5fw3HPPoaGhAQ0NDbh06RLOnTuHv/3tb51VIxERkd2cbVkpNTUVVqsVp06dQmNjo9Tu7e3dYYURESmNT+LOdt3f8ZVT2nV/SmVT0KWnp+OFF17AnXfeCbX68iBQpVLh8OHDHVocERHRzbIp6F5//XWUl5fD09Ozo+shIpIFR1vKZdNVlwMGDGDIERFRl2TTiC4wMBDTp0/HrFmz0L17d6k9MjKywwojIiJqDzYFXU1NDTw8PLBr1y6pTaVSMeiIiMjh2RR0GzZs6Og6iIioHfBc47VsCrqNGze22P7444/bfeDa2lo8/fTT+Oabb6BSqZCQkIC4uDgkJiZi27ZtUKvVSEpKkm5MP3DgAKKionDhwgX4+/tj06ZN6NWrl93HJyKiW4NNQffVV19Jf6+rq0NhYSFGjRp1U0G3ZMkS+Pv7491334UQAqdPn0ZBQQFKSkpQUVGBkydP4t5778Vf/vIX9OrVC/Hx8UhKSkJYWBiWLl2KlJQU/PWvf7X7+EREdGuwKej+/e9/N1s+e/YsoqKi7D5odXU1duzYAZPJBODy+b6+ffsiJycH0dHRcHJygpeXF0JDQ5GXl4fQ0FCYTCbpQdIxMTF4+OGHGXRE19EZH2PxozJydHZN0+Pu7o6ff/7Z7oMePXoU/fr1wzPPPIPg4GDMmjULv/zyCywWC7RarbSet7c3zGZzq+1XS0tLg16vl15VVVV210hERMpg04juySefhEqlAgA0NTXhhx9+wOjRo+0+aGNjI8rKyrB69Wq8/fbbyMzMxIIFC3Dbbbe1uL4Qwqb9Go1GGI1GaVmv19tdIxERKYNNQTd27Nj/beDsjAULFmDMmDF2H1Sj0cDDwwMTJ04EAMyZMweLFy/GY4891mykZjKZcPfdd0Oj0VzTrtFo7D4+ERHdOmwKuqioKFitVhw5cgQAMGTIkJs6aL9+/eDv74/vv/8ewcHByM/Ph7+/P8LDw/Haa68hKioKJ0+eRHFxMd555x24urpCq9UiLy8PYWFhyMjIQHh4+E3VQCQ3ntsi6hw2Bd2ePXswZ84cuLu7AwDOnz+PLVu24O6777b7wOnp6YiJiUFtbS169+6N9evXw8/PD/n5+dDpdFCr1UhNTYWrq6u0flRUFIxGI/z8/JCdnW33sYmI6NZhU9A9++yz+OCDDxASEgIA2LdvH55++mns2bPH7gPr9Xp8/fXX17QnJycjOTn5mnaDwYDS0lK7j0dERLcmm666rKurk0IOAEaOHIm6uroOK4qIiKi92DSiGzBgANLS0vDEE09ApVIhMzMTAwYM6OjaiGTD82dEymHTiG79+vX4/PPPodVqodVqUVhYiIyMjI6ujYiI6Ka1GXSbN2/Gxo0b4eXlhe3bt+Ps2bM4c+YMpk+f3mwmAyIiIkfVZtCtXbsWM2fOvKZ91qxZSElJ6aiaiIiI2k2bQdfQ0IA77rjjmnZXV1c0NDR0WFFERETtpc2gO3fuXIuBVl9fj+rq6g4rioiIqL20GXTTpk1DTEwMampqpLaamhosXLgQU6dO7fDiiIiIblabQbdy5UoAl28vCA4ORnBwMAYMGICmpiasWrWqUwokIiK6GW3eR9ejRw+89957OHbsGA4ePAgA8Pf3x6BBgzqlOCIioptl0w3jgwYNYrgREVGXZNfEq0RERF0Fg46IiBSNQUdERIrGoCMiIkVj0BERkaLZdNUlEZGcOG0S3QyO6IiISNEYdEREpGgMOiIiUjSeo6Muh+driOhGcERHRESKxqAjIiJFY9AREZGi8RwdtSuePyMiRyP7iM5oNMLZ+X95m5iYCF9fX+h0OuTk5EjtBw4cwMiRIzFkyBDMnDmz2aznRERErZE16L766qtmgVVQUICSkhJUVFSgsLAQCQkJ0tfj4+ORlJSEI0eOQKfTISUlRa6yiYioC5Et6Orr65GYmIjXX39dasvJyUF0dDScnJzg5eWF0NBQ5OXl4dSpUzCZTAgLCwMAxMTENBvtERERtUa2oFuxYgViYmLQp08fqc1isUCr1UrL3t7eMJvNrbZfLS0tDXq9XnpVVVV1bCeIiMjhyRJ0+/fvx549e/DEE080axdCtLh+a+1XMxqNKC8vl17u7u43XSsREXVtsgTd7t27UV5ejkGDBsHHxwdWqxU+Pj7o06dPs5GayWSCRqOBRqNpsZ2IiOh6ZAm6p556CidOnMDx48dx/PhxODk54fjx44iMjERWVhasVisqKytRXFyMsLAw9O/fH1qtFnl5eQCAjIwMhIeHy1E6ERF1MQ51H92kSZOQn58PnU4HtVqN1NRUuLq6AgDS09MRFRUFo9EIPz8/ZGdny1wtERF1BQ4RdI2NjdLfk5OTkZycfM06BoMBpaWlnVkWEREpgOw3jBMREXUkBh0RESkag46IiBSNQUdERIrGoCMiIkVj0BERkaIx6IiISNEYdEREpGgMOiIiUjQGHRERKRqDjoiIFM0hnnXpyHwSd7br/o6vnNLhx2jtOEREtyKO6IiISNEYdEREpGgMOiIiUjQGHRERKRqDjoiIFI1XXd5COuMKUiIiR8MRHRERKRqDjoiIFI1BR0REisagIyIiRWPQERGRojHoiIhI0Rh0RESkaLIEndlsxoQJE+Dn5wd/f38sX75c+lpiYiJ8fX2h0+mQk5MjtR84cAAjR47EkCFDMHPmTNTU1MhROhERdTGyBJ2zszNWrVqFn376CaWlpSguLsZHH32EgoIClJSUoKKiAoWFhUhISJACLT4+HklJSThy5Ah0Oh1SUlLkKJ2IiLoYWYLO09MTISEhAIBu3bohKCgIJpMJOTk5iI6OhpOTE7y8vBAaGoq8vDycOnUKJpMJYWFhAICYmJhmoz0iIqLWyH6O7vfff0dubi4mTZoEi8UCrVYrfc3b2xtms7nV9qulpaVBr9dLr6qqqk7pAxEROS5Zg66hoQERERFYtGgRhg0bBiFEi+u11n41o9GI8vJy6eXu7t6e5RIRURckW9BZrVZERkYiMDAQS5YsAQBotdpmIzWTyQSNRgONRtNiOxER0fXIFnQLFy6Eq6trs4tKwsPDkZWVBavVisrKShQXFyMsLAz9+/eHVqtFXl4eACAjIwPh4eFylU5ERF2ILNP07N69G5mZmQgICEBQUBAAYMGCBXj22WeRn58PnU4HtVqN1NRUuLq6AgDS09MRFRUFo9EIPz8/ZGdny1E6ERF1MbIEXWhoaKvn3ZKTk5GcnHxNu8FgQGlpaUeXRkRECiP7VZdEREQdiUFHRESKxqAjIiJFY9AREZGiMeiIiEjRGHRERKRoDDoiIlI0Bh0RESkag46IiBSNQUdERIrGoCMiIkVj0BERkaIx6IiISNEYdEREpGgMOiIiUjQGHRERKRqDjoiIFI1BR0REisagIyIiRWPQERGRojHoiIhI0Rh0RESkaAw6IiJSNAYdEREpGoOOiIgUrUsFXVFREfz9/eHr64vY2FhYrVa5SyIiIgfXZYKuqakJsbGx+OCDD/Dzzz/jwoUL2LRpk9xlERGRg+syQbd3714MGDAAer0eABATE4OcnByZqyIiIkenEkIIuYuwRU5ODrZv347s7GwAwE8//YTIyEiUlpZK66SlpSEtLU1aPnr0KO666y5UVVXB3d2902tub0rpB6CcvrAfjoX9cCyd2Q+LxYILFy60+DXnTqmgHdiSx0ajEUaj8Zp2vV6P8vLyjiirUymlH4By+sJ+OBb2w7E4Sj+6zEeXWq0WZrNZWjaZTNBoNDJWREREXUGXCbqQkBBYLBbpfwcZGRkIDw+XuSoiInJ0XSbonJycsH79ekRERGDw4MHo1asX5s+fb9O2LX2c2RUppR+AcvrCfjgW9sOxOEo/uszFKERERPboMiM6IiIiezDoiIhI0RQfdEp4bJjZbMaECRPg5+cHf39/LF++XO6SbprRaISzc5e5u+UatbW1iIqKwtChQzFs2DD861//krsku2zatAkGgwGBgYG47777UFFRIXdJNlm0aBE0Gs01/4YSExPh6+sLnU7XJR4o0VI/srOzMWLECBgMBoSEhOCLL76QsULbtPbzAIBz587By8sLsbGxMlT2/4SCWa1WMXjwYHHw4EEhhBAPP/ywyMrKkrmqG3fixAmxd+9eIYQQ9fX1YuzYsSI3N1fmquy3a9cu8fjjjwsnJye5S7FbXFycWLVqlRBCiKamJnHq1CmZK7pxtbW14s477xSnT58WQgiRnp4uIiIiZK7KNl999ZX49ddfm/0bys/PF/fdd59obGwUFotFaLVaUV1dLWOV19dSP3bv3i3OnDkjhBBi//79om/fvsJqtcpVok1a6sefnnzySTFv3jwRExMjQ2WXKXpEp5THhnl6eiIkJAQA0K1bNwQFBcFkMslclX3q6+uRmJiI119/Xe5S7FZdXY0dO3Zg8eLFAACVSoW+ffvKXNWNa2pqghACNTU1AIDz58/D09NT5qpsM3bsWPTv379ZW05ODqKjo+Hk5AQvLy+EhoYiLy9Ppgpt01I/xowZAw8PDwBAQEAA6uvrUVtbK0d5NmupHwBQWFiI+vp6TJgwQYaq/qfrfnZkA4vFAq1WKy17e3s3u+m8K/r999+Rm5vr8L/ArVmxYgViYmLQp08fuUux29GjR9GvXz8888wz+PbbbzFw4EC88cYbGDhwoNyl3ZBevXrhrbfeQkBAANzc3ODm5oavv/5a7rLsZrFYmt1bq4Tf961bt2L48OFwdXWVu5QbdvHiRSxfvhwff/wxdu7cKWstih7RCYXdOdHQ0ICIiAgsWrQIw4YNk7ucG7Z//37s2bMHTzzxhNyl3JTGxkaUlZUhIiIC33//PaZNm4YFCxbIXdYNu3TpEtatW4e9e/eisrISERERWLZsmdxl2U1pv++lpaVITExEZmam3KXY5dVXX8XChQsd4j+1ig46JT02zGq1IjIyEoGBgViyZInc5dhl9+7dKC8vx6BBg+Dj4wOr1QofH59WH8TqqDQaDTw8PDBx4kQAwJw5c7Bv3z6Zq7pxZWVlEELAz88PwOV+lJSUyFyV/ZT0+3748GHMnj0bW7duxZAhQ+Quxy4lJSVYsWIFfHx88Pzzz+P999/HwoUL5SlGtrODnaCxsVEMGjSo2cUomZmZMldlnwULFojo6GjR1NQkdyntpitfjDJu3Dixb98+IYQQubm5YsyYMTJXdONOnDghPDw8hMViEUII8cYbb4hHH31U5qpuzJX/hvLy8ppdjKLRaMSFCxdkrM52V/bDbDYLX19f8emnn8pYkX1a+53esGGDrBejKPoc3ZWPDauvr8f9999v82PDHMnu3buRmZmJgIAABAUFAQAWLFiAZ599VubKbl3p6emIiYlBbW0tevfujfXr18td0g3z9PTEypUrMWnSJLi4uKBPnz5d5mOyuLg47Ny5E1arFRqNBjNmzEBaWhry8/Oh0+mgVquRmprq8Oe2WupHQ0MDfvvtNyxbtkz6KDk3Nxc+Pj7yFtuG1n4ejoKPACMiIkVT9Dk6IiIiBh0RESkag46IiBSNQUdERIrGoCMiIkVj0BG14M9nizq6jIwMpKSk2LVtWVkZduzY0c4V3bitW7dixYoVcpdBCsbbC4i6qKamJhgMBuzZswc9e/a84e2zsrJQXFzcKfcANjY2tjot05/9+Oabb9CrV68Or4VuPRzREbXgyjdlZ2dnrFixAoGBgTAYDDh8+DCAy2/QL774IoYPH44RI0ZIsxlYLBY8+OCDMBgMGDVqFL755hsAl+dGHDNmDB555BHodDo88sgjKCkpwbhx4+Dj44P//Oc/0jE/+OAD3HPPPQgKCsLs2bNx/vz5a2osKiqCn5+fFHIXL15EfHw8hg8fDoPBII30/vGPf2DUqFEYMWIEpk6dirNnz6K6uhqvvPIKPvzwQwQGBuLNN98EAKxduxZ33303RowYgdjYWFy6dAkAUFBQAL1ej6CgICxduhS+vr5SHa+88goCAgIQEBDQbGTm4+ODxMREhISEYNWqVdBqtc2ewj9s2DAcPXoUarUaEydOxPbt22/iJ0bUBtmeyULkwK58lBEAsWXLFiGEEKtXrxaxsbFCCCHeeecdMXnyZFFfXy+EENIcYjNnzhRr1qwRQgjx7bffioEDB4qGhgZRWFgoevbsKY4dOyasVqsICQkRERERorGxURw8eFD4+PgIIYQ4dOiQmDRpkqirqxNCCJGcnCyWLl16TY2vvvqqWLlypbT8wgsviNjYWGnusj/r+fNPIYRISUkRiYmJQohrH8v0+eefi3nz5knbG41GsW7dOnHx4kXh5eUlPUpvyZIlYvDgwUKIy48/u/fee8XFixfFxYsXxahRo8Qnn3wihBBi4MCB4uWXX5b2//TTT4uMjAwhhBBFRUViwoQJ0tc2bdokfV+J2puiHwFG1B5UKhVmz54NABg1ahQ+/fRTAMBnn32Gp556Ct26dQMAaQ6xL7/8Eu+99560fu/evXHkyBEAQFBQkPQop+HDh+Oee+6Bk5MT9Ho9fv31VzQ1NSE/Px8//vgj7rnnHgCXZxkYPnz4NXWdOHECo0ePlpY/++wzbNiwAWq1ulk9JSUlSEpKQnV1NS5evNjqzBeffPIJdu3aheDgYABAXV0dbrvtNlRUVDSb13H+/PnIzc0FcHlUOXfuXPTo0QMAEBkZicLCQkyePBkAMHfuXGn/cXFxiIuLw4IFC7B+/fpmM0737dsXJ06caOvHQGQ3Bh3RdajVari4uAC4/PzUxsZGAG1PC6NSqVr8e/fu3Zvt98pl4H+ToT766KN444032qzrtttuQ11dnbTcUj319fWIjo7Gt99+i8GDB+Pjjz/GmjVrWtyfEAIJCQl47rnnmrX/8MMPNvWtpeUrzx0aDAaoVCoUFxejqKio2bnBP0OVqCPwHB2RnR588EGkp6ejoaEBAHD27FkAwAMPPIANGzYAAPbt24dz587d0FQrEydOxIcffgiLxQIA+OOPP3Do0KFr1vP395dGin/Ws3btWjQ1NUn11NXVoampCX379oXVakVGRoa0vqura7MpkiZPnowNGzbg3LlzAICqqiocO3YMQ4cOxYkTJ6QaNm3aJG3zwAMPYPPmzaivr0ddXR22bNmC8ePHt9q3uLg4PProo4iIiGgW8ocPH0ZAQIDN3yOiG8GgI7JTTEwMAgMDERQUhMDAQCQlJQEA3nzzTfz3v/+FwWBAfHw8Nm/eLI0IbeHn54fU1FRMnz4dI0aMwOjRo3Hw4MFr1nvooYdQVFQkLb/44otQqVTSxTEbN26Em5sbFi9eDIPBgNGjR0On00nrjx8/HsePH5cuRpk4cSLi4+Mxbtw4GAwGTJgwARaLBT169EBmZiZmzZqFoKAgNDQ0wM3NDQAwffp0TJgwASNHjkRISAgeeughPPjgg6327ZFHHsHZs2fx5JNPNmv//PPPMW3aNJu/R0Q3grcXEHVhc+bMwfPPP9/h9/3V1NRIl/7//e9/h8ViQXp6+g3v58svv8TLL7+MXbt2SW1msxlRUVH44osv2q1eoivxHB1RF7Zq1SqUl5d3+HE2btyId955B5cuXYKPj49d89Y9//zz2LZtG95///1m7b/88kur5w2J2gNHdEREpGg8R0dERIrGoCMiIkVj0BERkaIx6IiISNEYdEREpGgMOiIiUrT/A8/SbDdiwbALAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [] }, { "cell_type": "markdown", "id": "ebe67fc8", "metadata": {}, "source": [ "**Exercise:** Make a histogram of the `parity` column, which records the number of children each respondent has borne.\n", "How would you describe this distribution?" ] }, { "cell_type": "code", "execution_count": 50, "id": "e740d764", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAAcYUlEQVR4nO3df0xV9/3H8dfll6b00jD/AbmXWQo3/FByUTfb4Vw7K2vmisKodtQVKlTMWGpNmxSl9Y/NVNuKabPeksUfsz9cYwqKjTYpuoCKNE21sKl0SqvtvTBCIlIVVkQv9/tH0/stq+AFudzL4flIbuL9nPs5532PN/fF55xzP8fk8Xg8AgDAoEICXQAAAP5E0AEADI2gAwAYGkEHADA0gg4AYGgEHQDA0Ag6AIChhQW6AH+KioqSxWIJdBkAAD9ra2vTlStXbrrM0EFnsVjU0tIS6DIAAH6Wmpo65DIOXQIADI2gAwAYmqEPXQKAkTA1sWQymUbch6ADgCB3/fp1uVwuXbt2LdClBNyUKVNktVoVHh7ucx+CDgCCnMvlktls1owZM0Y1ojEKj8ejrq4uuVwuJSQk+NyPoAOAIObxeHTt2jXNmDFDISGT+7IKk8mkadOm6eLFi/J4PD6H/uTeawAwQUzmkdz3cY7OD2aUHRxxny83L/ZDJQAw8W3YsEH33nuvfv3rX6umpkYJCQlKT0/36zYJOgCYYEbzB/itjMcf6Ddu3NCf/vQn7/Oamho9+OCDfg86Dl0CAHwSFham9evXa9asWZo9e7ZOnTolSTp58qQyMzOVkZEhu92u2traQX2ef/55ZWRkaO/evSosLNQ777yjuro6vf/++yovL5fdbtfx48dltVrV29vr7ZucnKzz58/fft23vQYAwKTgdrtlsVh06tQp7d+/X0888YROnDihpKQk1dfXKzw8XO3t7VqwYIG++OILb5+EhAQ1NTVJkj744ANJ0gMPPKDs7Gw9+OCDWrFihSQpOztbe/bs0cqVK3XkyBFZLJYRXV05FEZ0AACfFRQUSJKWLFmi8+fPq7e3Vz09PXrsscc0c+ZMLV68WC6XSxcvXvT2yc/P92ndJSUl2rZtmyRp+/btKi4uHpOaCToAwG0pLy/3Hspsbm6W2WxWX1+fJCk0NFRTp071aT3p6ekymUxqaGhQfX29cnJyxqQ+gg4A4LO3335bknTgwAElJCQoMjJSly9fVlxcnEwmk6qqqnTp0iWf1mU2m39wa52SkhItX75ceXl5mjJlypjUTNABAHwSGhoql8ul9PR0bdiwQTt37pQkrVu3Ti+++KLsdruOHDmi+Ph4n9aXn5+v119/XXa7XY2NjZKkZcuWqaurS08++eSY1W3yGHiW0NTU1Nu+Hx2/owMQSB6PR//+97+VnJwc8B+Nh4WF6caNG37dxpEjR/TCCy/o6NGjN10+1P4Y7vueqy4BAEHh2WefVVVVlfbs2TOm6+XQJQDAJ/4ezW3ZskVffvml5s2bN6br9XvQZWVlyW63a9asWcrLy/OeeCwrK1NiYqJsNpuqq6u9rz99+rTmzJmjpKQkLV26VD09Pd5lQ/UBAGAofg+69957T83NzTp16pQsFou2bt2qw4cPq7GxUWfPnlVdXZ3Wrl3rDbTVq1dr06ZNam1tlc1mU0VFhSQN2wcAjM7Al1OMyGj2g9+D7q677pIkDQwMqK+vTyaTSdXV1SosLFRoaKji4uKUmZmp2tpadXZ2yul0KisrS5JUVFTkHbkN1QcAjMxkMmnKlCnq6urSwMCAPB7PpH0MDAyoq6tLU6ZMGdGFOeNyMUpOTo6OHTumWbNmacuWLfrd736n3Nxc7/L4+Hi5XC61tbXJarX+oF2S2trabtoHAIzOarX+YLaRyeq7O4yPxLgE3b59+9Tf36+ioiJVVVUNOfQcbkjqy3DV4XDI4XB4n3d3d4+8WAAIMuHh4UpISODwpUZ3P7pxu+oyIiJCjz76qPbt2+f96+Q7TqdTFotFFovlpu2ShuzzfaWlpWppafE+oqOj/fyuAGD8mEymSf8YDb8G3dWrV9XR0SHp23N077//vtLS0pSbm6tdu3bJ7Xarvb1dDQ0NysrKUkxMjKxWq/fc244dO7yHK4fqAwDAcPx66PLq1atasmSJrl27poGBAc2bN0/PP/+87rjjDh06dEg2m00hISHaunWrzGazJKmyslIFBQUqLS1VSkqKdu/eLUlatGjRkH0AABgKU4DdAlOAAUDwG+77nplRAACGRtABAAyNoAMAGBpBBwAwNIIOAGBoBB0AwNAIOgCAoRF0AABDI+gAAIZG0AEADI2gAwAYGkEHADA0gg4AYGgEHQDA0Ag6AIChEXQAAEMj6AAAhkbQAQAMjaADABgaQQcAMDSCDgBgaH4LOpfLpYULFyolJUVpaWlat26dJKm+vl5ms1l2u112u105OTnePu3t7VqwYIFsNpvuv/9+dXR0eJe99tprSkpKUmJiohwOh7/KBgAYjN+CLiwsTC+99JI+++wzNTU1qaGhQfv375ckzZs3T83NzWpubta+ffu8fZ577jmtWLFC586d07Jly7R+/XpJUmtrq9544w01NTWpqalJr776qi5cuOCv0gEABuK3oIuNjdXcuXMlSREREcrIyJDT6Ry2z4EDB/T4449LkgoKCrzBuHfvXi1fvlx33nmnzGaz8vLyBgUkAABDGZdzdJcuXVJNTY0WLVokSTp58qQyMjK0YMECffjhh5Kkrq4uRUZGaurUqZKkyMhIhYeH6/Lly2pra5PVavWuLz4+Xi6XazxKBwBMcGH+3kB/f7/y8vK0Zs0aJScna/r06frqq68UFRWlM2fO6KGHHtLRo0dlNpuHXIfH4/FpWw6HY9D5u+7u7tuuHwAwsfl1ROd2u5Wfny+73a5nnnlGkhQVFaWoqChJUlpamjIzM/Xpp59q2rRp6u3tVV9fnySpt7dX/f39uuuuu2S1WgeN4JxOpywWyw+2V1paqpaWFu8jOjran28PADAB+DXoVq1aJbPZrIqKCm9bR0eHd4TW3t6ujz76SGlpaTKZTFq8eLHeeustSdKbb76p7OxsSVJOTo727Nmjnp4eXb16VVVVVYOu1gQAYCh+O3R5/Phx7dy5UzNnzlRGRoYkaeXKlQoJCVFlZaXCw8MlSRs3blRycrIkafPmzcrPz9crr7yi2NhYvfvuu5Ikm82m1atXy263y+Px6Omnn1ZCQoK/SgcAGIjJ4+sJsAkoNTVVLS0tt7WOGWUHR9zny82Lb2ubAICRGe77nplRAACGRtABAAyNoAMAGBpBBwAwNIIOAGBoBB0AwNAIOgCAoRF0AABDI+gAAIZG0AEADI2gAwAYGkEHADA0gg4AYGgEHQDA0Ag6AIChEXQAAEMj6AAAhkbQAQAMjaADABgaQQcAMDSCDgBgaAQdAMDQ/Bp0LpdLCxcuVEpKitLS0rRu3TrvsrKyMiUmJspms6m6utrbfvr0ac2ZM0dJSUlaunSpenp6btkHAICh+DXowsLC9NJLL+mzzz5TU1OTGhoatH//fh0+fFiNjY06e/as6urqtHbtWm+grV69Wps2bVJra6tsNpsqKiokadg+AAAMxa9BFxsbq7lz50qSIiIilJGRIafTqerqahUWFio0NFRxcXHKzMxUbW2tOjs75XQ6lZWVJUkqKiryjtyG6gMAwHDG7RzdpUuXVFNTo0WLFqmtrU1Wq9W7LD4+Xi6Xa8h2ScMuAwBgKGHjsZH+/n7l5eVpzZo1Sk5Olsfjuenrhmq/1bLvOBwOORwO7/Pu7u6RFwsAMBS/j+jcbrfy8/Nlt9v1zDPPSJKsVuug0ZjT6ZTFYpHFYrlp+3B9vq+0tFQtLS3eR3R0tD/fGgBgAvB70K1atUpms9l7UYkk5ebmateuXXK73Wpvb1dDQ4OysrIUExMjq9XqPfe2Y8cO5ebmDtsHAIDh+PXQ5fHjx7Vz507NnDlTGRkZkqSVK1fqqaee0qFDh2Sz2RQSEqKtW7fKbDZLkiorK1VQUKDS0lKlpKRo9+7dkqRFixYN2QcAgKGYPL6c/JqgUlNT1dLSclvrmFF2cMR9vty8+La2CQAYmeG+7306dHmzQ4QcNgQATAQ+Bd3FixcHPf/mm2+4tB8AMCEMG3R//vOfFR4erubmZkVERCgiIkLh4eGKjY3Vb3/72/GqEQCAURs26F544QVdv35dTz/9tPr7+9Xf36/r16/r66+/1saNG8erRgAARs2nqy63bt0qt9utzs5O3bhxw9seHx/vt8IAABgLPgVdZWWl1q9frx/96EcKCfl2EGgymXTu3Dm/FgcAwO3yKei2bNmilpYWxcbG+rseAADGlE9XXU6fPp2QAwBMSD6N6Ox2u7Kzs5WTk6MpU6Z42/Pz8/1WGAAAY8GnoOvp6dG0adN09OhRb5vJZCLoAABBz6eg+9vf/ubvOgAA8Aufgu6tt966afvjjz8+psUAADDWfAq6Y8eOef/d19enuro6/eQnPyHoAABBz6eg27Zt26DnXV1dKigo8EtBAACMpVHdeDU6Olqff/75WNcCAMCY82lE9+STT8pkMkmSBgYG9M9//lP33nuvXwsDAGAs+BR08+fP//8OYWFauXKlfvazn/mtKAAAxopPQVdQUCC3263W1lZJUlJSkl+LAgBgrPgUdB9//LEeffRRRUdHS5IuX76sd999Vz/96U/9WhwAALfLp6B76qmn9N5772nu3LmSpJMnT+oPf/iDPv74Y78WN9nNKDs4otd/uXmxnyoBgInLp6su+/r6vCEnSXPmzFFfX5/figIAYKz4fPcCh8Oh//73v/rmm2/kcDg0ffp0f9cGAMBt8ynotm/frn/84x+yWq2yWq2qq6vTjh07btlvzZo1slgsCgv7/yOk9fX1MpvNstvtstvtysnJ8S5rb2/XggULZLPZdP/996ujo8O77LXXXlNSUpISExPlcDhG8h4BAJPYsEH397//XW+99Zbi4uK0d+9edXV16eLFi8rOzh50J4OhPPLIIzpx4sQP2ufNm6fm5mY1Nzdr37593vbnnntOK1as0Llz57Rs2TKtX79ektTa2qo33nhDTU1Nampq0quvvqoLFy6M9L0CACahYYPuL3/5i5YuXfqD9pycHFVUVNxy5fPnz1dMTIzPxRw4cMA7f2ZBQYH2798vSdq7d6+WL1+uO++8U2azWXl5eYMCEgCAoQx71WV/f7+ioqJ+0G42m9Xf3z/qjZ48eVIZGRkym80qLy/Xr371K3V1dSkyMlJTp06VJEVGRio8PFyXL19WW1ub0tPTvf3j4+N17ty5UW9/PHHlJAAE1rBB9/XXX6u/v18RERGD2q9du6arV6+OaoOzZ8/WV199paioKJ05c0YPPfSQjh49KrPZPGQfj8fj07odDseg83fd3d2jqhEAYBzDHrp8+OGHVVRUpJ6eHm9bT0+PVq1apd/85jej2mBUVJR3lJiWlqbMzEx9+umnmjZtmnp7e70/W+jt7VV/f7/uuusuWa1WuVwu7zqcTqcsFssP1l1aWqqWlhbv47sfuAMAJq9hg27z5s2Svv15wezZszV79mxNnz5dAwMDeumll0a1wY6ODu8Irb29XR999JHS0tJkMpm0ePFi701e33zzTWVnZ0v69pzgnj171NPTo6tXr6qqqmrQ1ZoAAAxl2EOXU6dO1dtvv60LFy7ozJkzkr4dhd19990+rbykpEQHDx6U2+2WxWLRkiVLlJKSosrKSoWHh0uSNm7cqOTkZEnfBmt+fr5eeeUVxcbG6t1335Uk2Ww2rV69Wna7XR6PR08//bQSEhJG/aYBAJOHT1OA3X333T6H2/f99a9/vWn7H//4x5u2W63WQXcz/761a9dq7dq1I64BADC5jerGqwAATBQEHQDA0Ag6AIChEXQAAEMj6AAAhkbQAQAMjaADABgaQQcAMDSCDgBgaAQdAMDQCDoAgKERdAAAQyPoAACGRtABAAyNoAMAGBpBBwAwNIIOAGBoBB0AwNAIOgCAoRF0AABDI+gAAIZG0AEADM2vQbdmzRpZLBaFhYUNai8rK1NiYqJsNpuqq6u97adPn9acOXOUlJSkpUuXqqen55Z9AAAYjl+D7pFHHtGJEycGtR0+fFiNjY06e/as6urqtHbtWm+grV69Wps2bVJra6tsNpsqKipu2QcAgOH4Nejmz5+vmJiYQW3V1dUqLCxUaGio4uLilJmZqdraWnV2dsrpdCorK0uSVFRU5B25DdUHAIBbGfdzdG1tbbJard7n8fHxcrlcQ7YP1wcAgFsJu/VLxpbH4xlR+62WfZ/D4ZDD4fA+7+7uHllxAADDGfcRndVqHTQaczqdslgsslgsN20frs//Ki0tVUtLi/cRHR3tx3cCAJgIxj3ocnNztWvXLrndbrW3t6uhoUFZWVmKiYmR1Wr1nnvbsWOHcnNzh+0DAMCt+PXQZUlJiQ4ePCi32y2LxaIlS5bI4XDo0KFDstlsCgkJ0datW2U2myVJlZWVKigoUGlpqVJSUrR7925J0qJFi4bsAwDAcEweX0+ATUCpqalqaWm5rXXMKDs44j5fbl486v5j1RcAJpPhvu+ZGQUAYGgEHQDA0Ag6AIChEXQAAEMj6AAAhjbuM6NgfHDFJgB8ixEdAMDQCDoAgKERdAAAQyPoAACGRtABAAyNoAMAGBpBBwAwNIIOAGBoBB0AwNAIOgCAoRF0AABDI+gAAIZG0AEADI2gAwAYGkEHADC0gAXdjBkzlJaWJrvdLrvdrlOnTkmSysrKlJiYKJvNpurqau/rT58+rTlz5igpKUlLly5VT09PoEoHAEwgAR3Rffjhh2publZzc7NmzZqlw4cPq7GxUWfPnlVdXZ3Wrl3rDbTVq1dr06ZNam1tlc1mU0VFRSBLBwBMEEF16LK6ulqFhYUKDQ1VXFycMjMzVVtbq87OTjmdTmVlZUmSioqKBo32AAAYSkCD7uGHH5bdbld5ebmuX7+utrY2Wa1W7/L4+Hi5XK4h2wEAuJWwQG342LFjslqt6u3tVUFBgbZs2SKPx3PT1w7V/r8cDoccDof3eXd395jUCgCYuAI2ovtuhBYZGani4mI1NjbKarUOGqk5nU5ZLBZZLJabtv+v0tJStbS0eB/R0dH+fyMAgKAWkKDr7e3VlStXJElut1vV1dVKT09Xbm6udu3aJbfbrfb2djU0NCgrK0sxMTGyWq2qra2VJO3YsUO5ubmBKB0AMMEE5NBlZ2encnNzNTAwILfbrfvuu0/l5eW64447dOjQIdlsNoWEhGjr1q0ym82SpMrKShUUFKi0tFQpKSnavXt3IEoHAEwwAQm6hIQENTc333TZyy+/rJdffvkH7enp6WpqavJzZQAAowmqnxcAADDWCDoAgKERdAAAQyPoAACGRtABAAyNoAMAGBpBBwAwtIDNdYngNaPs4Ihe/+XmxX6qBABuHyM6AIChEXQAAEMj6AAAhkbQAQAMjaADABgaQQcAMDSCDgBgaAQdAMDQCDoAgKERdAAAQyPoAACGRtABAAyNSZ0xppgQGkCwYUQHADC0CRV09fX1SktLU2JiooqLi+V2uwNdEgAgyE2YoBsYGFBxcbHee+89ff7557py5YreeeedQJcFAAhyE+Yc3SeffKLp06crNTVVklRUVCSHw6GCgoIAV4axwvk9AP4wYYKura1NVqvV+zw+Pl4ulyuAFSGYjDQkJYISmCxMHo/HE+gifFFVVaV9+/Zp9+7dkqTPPvtM+fn5ampq8r7G4XDI4XB4n58/f14JCQl+q6m7u1vR0dF+W7+RsK9Ghv01Muwv3xl1X7W1tenKlSs3XTZhRnRWq3XQCM7pdMpisQx6TWlpqUpLS8etptTUVLW0tIzb9iYy9tXIsL9Ghv3lu8m4rybMxShz585VW1ub9z9ox44dys3NDXBVAIBgN2GCLjQ0VNu3b1deXp7uuece3Xnnnfr9738f6LIAAEFuwhy6lKRf/vKXQTXkHs/DpBMd+2pk2F8jw/7y3WTcVxPmYhQAAEZjwhy6BABgNAi6UWAqspGZMWOG0tLSZLfbZbfbderUqUCXFFTWrFkji8WisLDBZxLKysqUmJgom82m6urqAFUXXG62r+rr62U2m72fr5ycnABWGFxcLpcWLlyolJQUpaWlad26dd5lk+rz5cGIuN1uzz333OM5c+aMx+PxeB555BHPrl27AlxVcPvxj3/scblcgS4jaB07dszT0dHhCQ0N9bYdOnTI8/Of/9xz48YNT1tbm8dqtXquXr0awCqDw832VV1dnWfhwoUBrCp4/ec///F88sknHo/H47l27Zpn/vz5npqamkn3+WJEN0I3m4rM8H8Nwa/mz5+vmJiYQW3V1dUqLCxUaGio4uLilJmZqdra2gBVGDxutq8wtNjYWM2dO1eSFBERoYyMDDmdzkn3+SLoRoipyEbn4Ycflt1uV3l5ua5fvx7ocoIen7OROXnypDIyMrRgwQJ9+OGHgS4nKF26dEk1NTVatGjRpPt8EXQj5OEi1RE7duyYmpqadPz4cZ09e1ZbtmwJdElBj8+Z72bPnq2vvvpKTU1NqqysVHFxsS5cuBDosoJKf3+/8vLytGbNGiUnJ0+6zxdBN0K+TEWGwb77yzEyMlLFxcVqbGwMcEXBj8+Z76KiohQVFSVJSktLU2Zmpj799NMAVxU83G638vPzZbfb9cwzz0iafJ8vgm6EmIpsZHp7e70TrbrdblVXVys9PT3AVQW/3Nxc7dq1S263W+3t7WpoaFBWVlagywpKHR0d3hFKe3u7PvroI6WlpQW4quCxatUqmc1mVVRUeNsm2+drQs2MEgy+PxXZtWvX9Itf/IKpyIbR2dmp3NxcDQwMyO1267777lN5eXmgywoqJSUlOnjwoNxutywWi5YsWSKHw6FDhw7JZrMpJCREW7duldlsDnSpAXezfZWSkqLKykqFh4dLkjZu3Kjk5OQAVxocjh8/rp07d2rmzJnKyMiQJK1cuVJPPfXUpPp8MTMKAMDQOHQJADA0gg4AYGgEHQDA0Ag6AIChEXQAAEMj6AAAhkbQAQa2YcMGffDBB5Kkmpoa/etf/wpwRcD443d0gEHduHFj0H3bCgsL9eCDD2rFihUBrAoYf4zogCAVFham9evXa9asWZo9e7b3hrUnT55UZmamMjIyZLfbB91eJSwsTM8//7wyMjK0d+9eFRYW6p133lFdXZ3ef/99lZeXy2636/jx47Jarert7fX2TU5O1vnz58f9fQL+xhRgQJD6bpqrU6dOaf/+/XriiSd04sQJJSUlqb6+XuHh4Wpvb9eCBQv0xRdfePskJCSoqalJkryHLR944AFlZ2cPGtFlZ2drz549WrlypY4cOSKLxaKEhITAvFnAjxjRAUGsoKBAkrRkyRKdP39evb296unp0WOPPaaZM2dq8eLFcrlcunjxordPfn6+T+suKSnRtm3bJEnbt29XcXHx2L8BIAgQdMAEU15e7j2U2dzcLLPZrL6+PknfTjo+depUn9aTnp4uk8mkhoYG1dfXKycnx59lAwFD0AFB7O2335YkHThwQAkJCYqMjNTly5cVFxcnk8mkqqoqXbp0yad1mc1m7y2TvlNSUqLly5crLy9PU6ZMGfP6gWBA0AFBKjQ0VC6XS+np6dqwYYN27twpSVq3bp1efPFF2e12HTlyRPHx8T6tLz8/X6+//rrsdrv35rfLli1TV1eXnnzySb+9DyDQ+HkBEKTCwsJ048YNv27jyJEjeuGFF3T06FG/bgcIJK66BCapZ599VlVVVdqzZ0+gSwH8ihEdAMDQOEcHADA0gg4AYGgEHQDA0Ag6AIChEXQAAEMj6AAAhvZ/5vUPjgiK8+YAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [] }, { "cell_type": "code", "execution_count": 51, "id": "b4ffec77", "metadata": {}, "outputs": [], "source": [ "# The distribution is skewed to the right." ] }, { "cell_type": "markdown", "id": "b5180cf3", "metadata": {}, "source": [ "Use the `largest` function to find the largest values of `parity`.\n", "Are there any values you think are errors?" ] }, { "cell_type": "code", "execution_count": 52, "id": "a5a1c3ee", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "parity\n", "3 828\n", "4 309\n", "5 95\n", "6 29\n", "7 15\n", "8 8\n", "9 2\n", "10 3\n", "16 1\n", "22 1\n", "Name: parity, dtype: int64" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "markdown", "id": "0b7de721", "metadata": {}, "source": [ "**Exercise:** Let's investigate whether people with higher income bear more children.\n", "\n", "Use the query method to select the respondents with the highest income (level 14).\n", "Plot the histogram of `parity` for just the high income respondents." ] }, { "cell_type": "code", "execution_count": 53, "id": "8e3ce887", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAuJAAALiQE3ycutAAAZLUlEQVR4nO3df3DT9eHH8VeaAioG7RhaaFIL0khb6AJFZasebEp3NwWh6xxXbmuhKHXhZAxvVvEnuiHMdttphkzKOIXtdlBBTm9nYValdMf80aosmJWxmhRc7/ghUJQCId8/OPNdZ8FAmiZ59/m4y515J598Xvkc56vvz+eTz8cSCoVCAgDAUCnxDgAAQCxRdAAAo1F0AACjUXQAAKNRdAAAo1F0AACjUXQAAKOlxjtAbxgyZIjsdnu8YwAA4qS9vV1Hjx7t8TUjis5ut8vr9cY7BgAgTnJzc8/5GrsuAQBGo+gAAEYzYtclAPQHXJpYslgsF7wMRQcACe7UqVMKBALq6uqKd5S4GzRokBwOhwYMGBDxMhQdACS4QCAgm82mrKysi5rRmCIUCungwYMKBAIaNWpUxMtRdACQwEKhkLq6upSVlaWUlP59WoXFYtHQoUN14MABhUKhiEu/f281AEgS/Xkm9984RheFrKpX47r+tqdui+v6AaAvPPLII5o0aZK+973vafPmzRo1apTy8/Njuk6KDgCSTCz+MO+LP7ZPnz6tpUuXhp9v3rxZt956a8yLLqa7LrOyspSXlyeXyyWXy6UPP/xQklRVVaXRo0fL6XSqrq4u/P5du3apoKBA2dnZmjFjhjo7O2MZDwBwAVJTU/Xggw9q3LhxmjBhQvj/6e+++64KCws1fvx4uVwu1dfXd1vmoYce0vjx4/XSSy+pvLxc69atU0NDg7Zs2aIlS5bI5XJpx44dcjgcOn78eHjZMWPGaO/evVHnjvkxutdee00tLS1qaWnRuHHjtG3bNjU1Ncnn86mhoUGLFi0KF1plZaWWLVum1tZWOZ1OVVdXxzoeACBCwWBQdrtdH374oR599FHNmTNHkpSdna033nhDzc3NevXVV3XPPfd0W2bUqFFqbm7WnXfeGR7/9re/renTp+sXv/iFWlpaVFhYqOnTp+vPf/6zJOnNN9+U3W6/oLMrz6XPT0apq6tTeXm5rFarMjIyVFhYqPr6enV0dMjv96uoqEiSVFFR0W22BwCIv7KyMknSHXfcob179+r48ePq7OzU7NmzNXbsWN12220KBAI6cOBAeJnS0tKIPnv+/Pl6/vnnJUmrV6/WvHnzeiVzzItu2rRpcrlcWrJkiU6dOqX29nY5HI7w65mZmQoEAuccBwAktiVLloR3Zba0tMhms+nEiROSJKvVqksuuSSiz8nPz5fFYlFjY6PeeOMNzZw5s1fyxbTotm/frubmZu3YsUM+n09PP/30OS9hcyGXtvF4PMrNzQ0/Dh8+3FuRAQDn8eKLL0qSXnnlFY0aNUqDBw/WkSNHlJGRIYvFoo0bN+rQoUMRfZbNZvvSrXXmz5+vH/7whyopKdGgQYN6JXNMi+6LGdrgwYM1b948NTU1yeFwdJup+f1+2e122e32Hsd74na75fV6w4+0tLRYfg0AgM7OzgKBgPLz8/XII49ozZo1kqQHHnhAv/zlL+VyufTmm28qMzMzos8rLS3Vs88+K5fLpaamJknSnXfeqYMHD+quu+7qtdyWUIyuEnr8+HEFg0ENGTJEwWBQlZWVuuqqqzRlyhQ98cQTamho0H/+8x9NmjRJXq9XNptNhYWFevTRR1VUVKSf//znuvTSS/X4449/5bpyc3Ojvh8dv6MDkIhCoZA++ugjjRkzJu4/Gk9NTdXp06djuo4333xTDz/8sN56660eXz/X9jhfD8Tsd3QdHR0qLi7WmTNnFAwG9c1vflNLlizRZZddpq1bt8rpdColJUU1NTWy2WySpJUrV6qsrExut1s5OTlav359rOIBABLMfffdp40bN4bPvOwtMZvR9SVmdABMlUgzukRwMTM6rnUJADAaRQcAScCAnW+94mK2A9e6BIAEZrFYNGjQIB08eFBDhw7t17svv7gf3aBBgy5oO1B0AJDgvvhZ1n9fbaS/+uIO4xeCogOABDdgwACNGjWK3ZfifnQAYLT+vNsyGpyMAgAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMFqfFJ3b7VZqamr4eVVVlUaPHi2n06m6urrw+K5du1RQUKDs7GzNmDFDnZ2dfREPAGCwmBfd9u3buxXWtm3b1NTUJJ/Pp4aGBi1atCj8emVlpZYtW6bW1lY5nU5VV1fHOh4AwHAxLbquri5VVVXp6aefDo/V1dWpvLxcVqtVGRkZKiwsVH19vTo6OuT3+1VUVCRJqqio6DbbAwDgYsS06JYuXaqKigoNGzYsPNbe3i6HwxF+npmZqUAgcM5xAACiEbOi++CDD7Rz507NmTOn23goFOrx/eca74nH41Fubm74cfjw4aiyAgDMFbOi27Fjh7xer0aOHKmsrCwFg0FlZWVp2LBh3WZqfr9fdrtddru9x/GeuN1ueb3e8CMtLS1WXwMAkORiVnT33HOP9u/fr7a2NrW1tclqtaqtrU2lpaVau3atgsGg9u3bp8bGRhUVFSk9PV0Oh0P19fWSpNraWhUXF8cqHgCgn0j96rf0rqlTp2rr1q1yOp1KSUlRTU2NbDabJGnlypUqKyuT2+1WTk6O1q9f39fxAACGsYQu5OBYgsrNzZXX643qM7KqXu2lNBen7anb4rp+AEhm5+sBrowCADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMFrMi66oqEgul0vjxo1TSUmJjh49KkmqqqrS6NGj5XQ6VVdXF37/rl27VFBQoOzsbM2YMUOdnZ2xjggAMFjMi27Dhg1qaWnRhx9+KLvdrpqaGm3btk1NTU3y+XxqaGjQokWLwoVWWVmpZcuWqbW1VU6nU9XV1bGOCAAwWERFV1RUFNFYT6644gpJ0pkzZ3TixAlZLBbV1dWpvLxcVqtVGRkZKiwsVH19vTo6OuT3+8OfXVFR0W22BwDAhYqo6A4cONDt+eeff65AIBDxSmbOnKmrrrpKPp9PixcvVnt7uxwOR/j1zMxMBQKBc44DAHCxzlt0TzzxhAYMGKCWlhYNHDhQAwcO1IABAzR8+HB9//vfj3glmzZt0v79+2W327Vx40aFQqEe33eu8f/l8XiUm5sbfhw+fDjiLACA/uW8Rffwww/r1KlT+ulPf6qTJ0/q5MmTOnXqlD799FM9+eSTF7SigQMHatasWdq0aZMcDke3mZrf75fdbpfdbu9x/H+53W55vd7wIy0t7YKyAAD6j4h2XdbU1CgYDGr//v3y+/3hx1c5duyYPvnkE0lnj9Ft2bJFeXl5Ki4u1tq1axUMBrVv3z41NjaqqKhI6enpcjgcqq+vlyTV1taquLg4iq8HAOjvUiN508qVK/Xggw/qa1/7mlJSznajxWLRP//5z/Mud+zYMd1xxx3q6urSmTNndOONN+qhhx7SZZddpq1bt8rpdColJUU1NTWy2WzhdZWVlcntdisnJ0fr16+P8isCAPozSyiCA2PXXnutGhsbNXz48L7IdMFyc3Pl9Xqj+oysqld7Kc3FaXvqtriuHwCS2fl6IKJdlyNGjEjYkgMA4Hwi2nXpcrk0ffp0zZw5U4MGDQqPl5aWxiwYAAC9IaKi6+zs1NChQ/XWW2+FxywWC0UHAEh4ERXdH/7wh1jnAAAgJiIquhdeeKHH8R//+Me9GgYAgN4WUdFt3749/N8nTpxQQ0ODrr/+eooOAJDwIiq6559/vtvzgwcPqqysLCaBAADoTRd1m560tDTt2bOnt7MAANDrIprR3XXXXbJYLJLOXsrr/fff16RJk2IaDMmFH9wDSFQRFd1NN930/wukpmru3Ln61re+FbNQAAD0loiKrqysTMFgUK2trZKk7OzsmIYCAKC3RFR0O3fu1KxZs8K3wzly5Ij+9Kc/6YYbbohpOAAAohVR0d17773asGGDJk6cKEl699139ZOf/EQ7d+6MaTgAAKIV0VmXJ06cCJecJBUUFOjEiRMxCwUAQG+J+O4FHo9Hn332mT7//HN5PB6NGDEi1tkAAIhaREW3evVq/fWvf5XD4ZDD4VBDQ4Nqa2tjnQ0AgKidt+j++Mc/6oUXXlBGRoZeeuklHTx4UAcOHND06dO73ckAAIBEdd6ie+aZZzRjxowvjc+cOVPV1dWxygQAQK85b9GdPHlSQ4YM+dK4zWbTyZMnYxYKAIDect6i+/TTT3sstK6uLh07dixmoQAA6C3nLbpp06apoqJCnZ2d4bHOzk7dfffduv3222MeDgCAaJ236J566ilJZ39eMGHCBE2YMEEjRozQmTNntHz58j4JCABANM57ZZRLLrlEL774ov7973/rH//4hyQpLy9PI0eO7JNwAABEK6JLgI0cOZJyizNugwMAF+eibrwKAECyoOgAAEaj6AAARqPoAABGo+gAAEaj6AAARotZ0QUCAd1yyy3KyclRXl6eHnjggfBrVVVVGj16tJxOp+rq6sLju3btUkFBgbKzszVjxoxuV2QBAOBixKzoUlNTtXz5cu3evVvNzc1qbGzUyy+/rG3btqmpqUk+n08NDQ1atGhRuNAqKyu1bNkytba2yul0cocEAEDUYlZ0w4cP18SJEyVJAwcO1Pjx4+X3+1VXV6fy8nJZrVZlZGSosLBQ9fX16ujokN/vV1FRkSSpoqKi22wPAICL0SfH6A4dOqTNmzdr6tSpam9vl8PhCL+WmZmpQCBwznEAAKIR0SXAonHy5EmVlJRo4cKFGjNmjEKhUI/vO9d4TzwejzweT/j54cOHo84JADBTTGd0wWBQpaWlcrlcWrx4sSTJ4XB0m6n5/X7Z7XbZ7fYex3vidrvl9XrDj7S0tFh+DQBAEotp0d19992y2WzdTiopLi7W2rVrFQwGtW/fPjU2NqqoqEjp6elyOByqr6+XJNXW1qq4uDiW8QAA/UDMdl3u2LFDa9as0dixYzV+/HhJ0ty5c3Xvvfdq69atcjqdSklJUU1NjWw2myRp5cqVKisrk9vtVk5OjtavXx+reACAfiJmRVdYWHjO424rVqzQihUrvjSen5+v5ubmWEUCAPRDXBkFAGA0ig4AYDSKDgBgNIoOAGA0ig4AYDSKDgBgNIoOAGA0ig4AYDSKDgBgNIoOAGA0ig4AYDSKDgBgNIoOAGA0ig4AYDSKDgBgNIoOAGA0ig4AYDSKDgBgNIoOAGA0ig4AYDSKDgBgNIoOAGA0ig4AYDSKDgBgNIoOAGC01HgHAPpCVtWrcV1/21O3xXX9QH/GjA4AYDSKDgBgNIoOAGC0mBbdwoULZbfblZra/VBgVVWVRo8eLafTqbq6uvD4rl27VFBQoOzsbM2YMUOdnZ2xjAcA6AdiWnQ/+MEP9M4773Qb27Ztm5qamuTz+dTQ0KBFixaFC62yslLLli1Ta2urnE6nqqurYxkPANAPxLTobrrpJqWnp3cbq6urU3l5uaxWqzIyMlRYWKj6+np1dHTI7/erqKhIklRRUdFttgcAwMXo82N07e3tcjgc4eeZmZkKBALnHAcAIBp9/ju6UCh0QeM98Xg88ng84eeHDx+OOhcAwEx9PqNzOBzdZmp+v192u112u73H8Z643W55vd7wIy0tLea5AQDJqc+Lrri4WGvXrlUwGNS+ffvU2NiooqIipaeny+FwqL6+XpJUW1ur4uLivo4HADBMTItu/vz5stvtCgaDstvtcrvdmjp1qiZNmiSn06kpU6aopqZGNptNkrRy5Urdf//9ys7O1kcffaT77rsvlvEAAP1ATI/RrVq1qsfxFStWaMWKFV8az8/PV3NzcywjAQD6Ga6MAgAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMBpFBwAwGkUHADAaRQcAMFpqvAMAkLKqXo3r+tueui2u6wdiiRkdAMBoFB0AwGgJV3RvvPGG8vLyNHr0aM2bN0/BYDDekQAASSyhiu7MmTOaN2+eNmzYoD179ujo0aNat25dvGMBAJJYQp2M8vbbb2vEiBHKzc2VJFVUVMjj8aisrCzOyYD+jZNlkMwSakbX3t4uh8MRfp6ZmalAIBDHRACAZGcJhUKheIf4wsaNG7Vp0yatX79ekrR7926Vlpaqubm52/s8Ho88Hk/4+d69ezVq1Kg+zfq/Dh8+rLS0tLhmSGZsv+iw/aLD9rt4ibLt2tvbdfTo0R5fS6hdlw6Ho9sMzu/3y263f+l9brdbbre7L6N9pdzcXHm93njHSFpsv+iw/aLD9rt4ybDtEmrX5cSJE9Xe3h7eaLW1tSouLo5zKgBAMkuoorNarVq9erVKSkp07bXX6vLLL9ePfvSjeMcCACSxhNp1KUnf+c53En4a3JNE25WabNh+0WH7RYftd/GSYdsl1MkoAAD0toTadQkAQG+j6KLEJcsuXiAQ0C233KKcnBzl5eXpgQceiHekpOV2u5WamnBHIhLe8ePHVVZWpuuuu05jxozRqlWr4h0pqaxbt075+flyuVy6+eab5fP54h2pRxRdFLhkWXRSU1O1fPly7d69W83NzWpsbNTLL78c71hJZ/v27ers7Ix3jKS0ePFi5eXlyefzaffu3Zo5c2a8IyWNzz77TAsXLtTrr7+ulpYWzZ49Ww899FC8Y/WIootCT5csq6uri3Oq5DF8+HBNnDhRkjRw4ECNHz9efr8/zqmSS1dXl6qqqvT000/HO0rSOXbsmLZs2aKf/exnkiSLxaKrrroqzqmSx5kzZxQKhcJ/ZB05ckTDhw+Pc6qesa8jClyyrPccOnRImzdvVn19fbyjJJWlS5eqoqJCw4YNi3eUpLN3715dffXVWrBggf7+97/rmmuu0W9+8xtdc8018Y6WFC6//HI9++yzGjt2rK644gpdccUV+tvf/hbvWD1iRhcFTljtHSdPnlRJSYkWLlyoMWPGxDtO0vjggw+0c+dOzZkzJ95RktLp06fV0tKikpISvffee5o2bZrmzp0b71hJ49SpU/rd736nt99+W/v27VNJSYnuv//+eMfqEUUXhUgvWYZzCwaDKi0tlcvl0uLFi+MdJ6ns2LFDXq9XI0eOVFZWloLBoLKyss55vT90Z7fbNXToUN16662SpFmzZundd9+Nc6rk0dLSolAopJycHElnt19TU1OcU/WMoosClyyL3t133y2bzabq6up4R0k699xzj/bv36+2tja1tbXJarWqra1NQ4YMiXe0pHD11VcrLy9P7733niRp69atysvLi3Oq5GG32+Xz+bRv3z5JZ7ffF+crJBp+MB6l119/XQsWLFBXV5cmT56s3//+95zmHaEdO3bopptu0tixY2W1WiVJc+fO1b333hvnZMkpNTVVp0+fjneMpOL1elVRUaHjx4/ryiuv1KpVq8IzFHy11atXq6amRgMGDNCwYcO0Zs0aZWZmxjvWl1B0AACjsesSAGA0ig4AYDSKDgBgNIoOAGA0ig4AYDSKDgBgNIoOSCAWi0Uul0tjx47V5MmT9a9//euCln/uuee0evVqSWdvIfXWW2/FIiaQVPgdHZBA/vtH3/fff798Pp82b94c0bKnT5/udrGCxx57TKmpqQl76xSgrzCjAxLUlClT1NraqkAgoMmTJ2vChAkaN25ct3seZmVlqaqqShMnTtQzzzyjxx57TE8++aR8Pp+ee+45eTweuVwubdiwQdddd50+/vjj8LJFRUVqaGiIx1cD+hTXqgISUCgU0pYtW/SNb3xDX//61/WXv/xFl112mY4ePaqCggLdfvvtuvLKKyWdvZffO++8I+nsLE6SrrvuOlVWVnab0bW1tam2tlZLly5VW1ubPv74Y02ZMiUO3w7oW8zogAQSDAblcrnkcrl06NAhVVdX6/Tp01qwYIHGjRunm2++WZ988on27NkTXmb27NkRfXZ5ebnWr1+vYDCo2tpazZkzRxaLJVZfBUgYzOiABGK1WtXS0tJt7PHHH9ell16qlpYWWa1WFRQU6MSJE+HXBw8eHNFnDxs2TDfeeKNeeeUVrVu3LmFvkgn0NooOSHBHjhxRenq6rFardu7cqffffz+i5Ww2mzo6OrqNzZ8/X6WlpbrhhhuUnp4ei7hAwmHXJZDgFixYoE2bNik/P1+//e1vdf3110e03B133KHXXntN48eP18aNGyVJkydPVmpqqu66665YRgYSCj8vAPqRvXv36rvf/a58Pp9SUvg7F/0D/9KBfuLXv/61Jk+erF/96leUHPoVZnQAAKPxZx0AwGgUHQDAaBQdAMBoFB0AwGgUHQDAaBQdAMBo/wd5j+uh0V2h9wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [] }, { "cell_type": "markdown", "id": "b1c9b431", "metadata": {}, "source": [ "Compare the mean `parity` for high income respondents and others." ] }, { "cell_type": "code", "execution_count": 54, "id": "9a3f1210", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1.0758620689655172, 1.2495758136665125)" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "markdown", "id": "fbf95bb5", "metadata": {}, "source": [ "Compute the Cohen effect size for this difference.\n", "How does it compare with the difference in pregnancy length for first babies and others?" ] }, { "cell_type": "code", "execution_count": 55, "id": "91b96d39", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-0.12511855314660367" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "markdown", "id": "0e29d464", "metadata": {}, "source": [ "Do these results show that people with higher income have more children, or can you think of another explanation for the apparent difference?" ] }, { "cell_type": "code", "execution_count": 56, "id": "0844b1b3", "metadata": {}, "outputs": [], "source": [ "# The NSFG inteviews respondents at a range of ages.\n", "# The older respondents are likely to have higher incomes,\n", "# and also more likely to have borne more children.\n", "\n", "# To check whether people with higher income have more\n", "# children, we need to compare people at the same ages." ] }, { "cell_type": "code", "execution_count": null, "id": "72605520", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "e27da3a4", "metadata": { "tags": [] }, "source": [ "[Think Stats: Exploratory Data Analysis in Python, 3rd Edition](https://allendowney.github.io/ThinkStats/index.html)\n", "\n", "Copyright 2024 [Allen B. Downey](https://allendowney.com)\n", "\n", "Code license: [MIT License](https://mit-license.org/)\n", "\n", "Text license: [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/)" ] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 5 }