Skip to content

Welcome to ModSimPy Documentation

This is the documentation for the Modeling and Simulation in Python library.

API Reference

Params

Bases: SettableNamespace

Contains system parameters and their values.

Takes keyword arguments and stores them as attributes.

Source code in modsim/modsim.py
764
765
766
767
768
769
class Params(SettableNamespace):
    """Contains system parameters and their values.

    Takes keyword arguments and stores them as attributes.
    """
    pass

SettableNamespace

Bases: SimpleNamespace

Contains a collection of parameters.

Used to make a System object.

Takes keyword arguments and stores them as attributes.

Source code in modsim/modsim.py
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
class SettableNamespace(SimpleNamespace):
    """Contains a collection of parameters.

    Used to make a System object.

    Takes keyword arguments and stores them as attributes.
    """
    def __init__(self, namespace=None, **kwargs):
        """Initialize a SettableNamespace.

        Args:
            namespace (SettableNamespace, optional): Namespace to copy. Defaults to None.
            **kwargs: Keyword arguments to store as attributes.
        """
        super().__init__()
        if namespace:
            self.__dict__.update(namespace.__dict__)
        self.__dict__.update(kwargs)

    def get(self, name, default=None):
        """Look up a variable.

        Args:
            name (str): Name of the variable to look up.
            default (any, optional): Value returned if `name` is not present. Defaults to None.

        Returns:
            any: Value of the variable or default.
        """
        try:
            return self.__getattribute__(name, default)
        except AttributeError:
            return default

    def set(self, **variables):
        """Make a copy and update the given variables.

        Args:
            **variables: Keyword arguments to update.

        Returns:
            Params: New Params object with updated variables.
        """
        new = copy(self)
        new.__dict__.update(variables)
        return new

__init__(namespace=None, **kwargs)

Initialize a SettableNamespace.

Parameters:

Name Type Description Default
namespace SettableNamespace

Namespace to copy. Defaults to None.

None
**kwargs

Keyword arguments to store as attributes.

{}
Source code in modsim/modsim.py
671
672
673
674
675
676
677
678
679
680
681
def __init__(self, namespace=None, **kwargs):
    """Initialize a SettableNamespace.

    Args:
        namespace (SettableNamespace, optional): Namespace to copy. Defaults to None.
        **kwargs: Keyword arguments to store as attributes.
    """
    super().__init__()
    if namespace:
        self.__dict__.update(namespace.__dict__)
    self.__dict__.update(kwargs)

get(name, default=None)

Look up a variable.

Parameters:

Name Type Description Default
name str

Name of the variable to look up.

required
default any

Value returned if name is not present. Defaults to None.

None

Returns:

Name Type Description
any

Value of the variable or default.

Source code in modsim/modsim.py
683
684
685
686
687
688
689
690
691
692
693
694
695
696
def get(self, name, default=None):
    """Look up a variable.

    Args:
        name (str): Name of the variable to look up.
        default (any, optional): Value returned if `name` is not present. Defaults to None.

    Returns:
        any: Value of the variable or default.
    """
    try:
        return self.__getattribute__(name, default)
    except AttributeError:
        return default

set(**variables)

Make a copy and update the given variables.

Parameters:

Name Type Description Default
**variables

Keyword arguments to update.

{}

Returns:

Name Type Description
Params

New Params object with updated variables.

Source code in modsim/modsim.py
698
699
700
701
702
703
704
705
706
707
708
709
def set(self, **variables):
    """Make a copy and update the given variables.

    Args:
        **variables: Keyword arguments to update.

    Returns:
        Params: New Params object with updated variables.
    """
    new = copy(self)
    new.__dict__.update(variables)
    return new

System

Bases: SettableNamespace

Contains system parameters and their values.

Takes keyword arguments and stores them as attributes.

Source code in modsim/modsim.py
756
757
758
759
760
761
class System(SettableNamespace):
    """Contains system parameters and their values.

    Takes keyword arguments and stores them as attributes.
    """
    pass

State(**variables)

Contains the values of state variables.

Parameters:

Name Type Description Default
**variables

Keyword arguments to store as state variables.

{}

Returns:

Type Description

pd.Series: Series with the state variables.

Source code in modsim/modsim.py
772
773
774
775
776
777
778
779
780
781
def State(**variables):
    """Contains the values of state variables.

    Args:
        **variables: Keyword arguments to store as state variables.

    Returns:
        pd.Series: Series with the state variables.
    """
    return pd.Series(variables, name='state')

SweepFrame(*args, **kwargs)

Create a DataFrame that maps from parameter value to SweepSeries.

Parameters:

Name Type Description Default
*args

Arguments passed to pd.DataFrame.

()
**kwargs

Keyword arguments passed to pd.DataFrame.

{}

Returns:

Type Description

pd.DataFrame: DataFrame indexed by parameter value.

Source code in modsim/modsim.py
887
888
889
890
891
892
893
894
895
896
897
898
def SweepFrame(*args, **kwargs):
    """Create a DataFrame that maps from parameter value to SweepSeries.

    Args:
        *args: Arguments passed to pd.DataFrame.
        **kwargs: Keyword arguments passed to pd.DataFrame.

    Returns:
        pd.DataFrame: DataFrame indexed by parameter value.
    """
    underride(kwargs, dtype=float)
    return pd.DataFrame(*args, **kwargs)

SweepSeries(*args, **kwargs)

Make a pd.Series object to store results from a parameter sweep.

Parameters:

Name Type Description Default
*args

Arguments passed to pd.Series.

()
**kwargs

Keyword arguments passed to pd.Series.

{}

Returns:

Type Description

pd.Series: Series with index name 'Parameter' and name 'Metric'.

Source code in modsim/modsim.py
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
def SweepSeries(*args, **kwargs):
    """Make a pd.Series object to store results from a parameter sweep.

    Args:
        *args: Arguments passed to pd.Series.
        **kwargs: Keyword arguments passed to pd.Series.

    Returns:
        pd.Series: Series with index name 'Parameter' and name 'Metric'.
    """
    if args or kwargs:
        underride(kwargs, dtype=float)
        series = pd.Series(*args, **kwargs)
    else:
        series = pd.Series([], dtype=np.float64)

    series.index.name = 'Parameter'
    if 'name' not in kwargs:
        series.name = 'Metric'
    return series

TimeFrame(*args, **kwargs)

Create a DataFrame that maps from time to State.

Parameters:

Name Type Description Default
*args

Arguments passed to pd.DataFrame.

()
**kwargs

Keyword arguments passed to pd.DataFrame.

{}

Returns:

Type Description

pd.DataFrame: DataFrame indexed by time.

Source code in modsim/modsim.py
873
874
875
876
877
878
879
880
881
882
883
884
def TimeFrame(*args, **kwargs):
    """Create a DataFrame that maps from time to State.

    Args:
        *args: Arguments passed to pd.DataFrame.
        **kwargs: Keyword arguments passed to pd.DataFrame.

    Returns:
        pd.DataFrame: DataFrame indexed by time.
    """
    underride(kwargs, dtype=float)
    return pd.DataFrame(*args, **kwargs)

TimeSeries(*args, **kwargs)

Make a pd.Series object to represent a time series.

Parameters:

Name Type Description Default
*args

Arguments passed to pd.Series.

()
**kwargs

Keyword arguments passed to pd.Series.

{}

Returns:

Type Description

pd.Series: Series with index name 'Time' and name 'Quantity'.

Source code in modsim/modsim.py
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
def TimeSeries(*args, **kwargs):
    """Make a pd.Series object to represent a time series.

    Args:
        *args: Arguments passed to pd.Series.
        **kwargs: Keyword arguments passed to pd.Series.

    Returns:
        pd.Series: Series with index name 'Time' and name 'Quantity'.
    """
    if args or kwargs:
        underride(kwargs, dtype=float)
        series = pd.Series(*args, **kwargs)
    else:
        series = pd.Series([], dtype=float)

    series.index.name = 'Time'
    if 'name' not in kwargs:
        series.name = 'Quantity'
    return series

Vector(x, y, z=None, **options)

Create a 2D or 3D vector as a pandas Series.

Parameters:

Name Type Description Default
x float

x component.

required
y float

y component.

required
z float

z component. Defaults to None.

None
**options

Additional keyword arguments for pandas.Series.

{}

Returns:

Type Description

pd.Series: Series with keys 'x', 'y', and optionally 'z'.

Source code in modsim/modsim.py
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
def Vector(x, y, z=None, **options):
    """Create a 2D or 3D vector as a pandas Series.

    Args:
        x (float): x component.
        y (float): y component.
        z (float, optional): z component. Defaults to None.
        **options: Additional keyword arguments for pandas.Series.

    Returns:
        pd.Series: Series with keys 'x', 'y', and optionally 'z'.
    """
    underride(options, name='component')
    if z is None:
        return pd.Series(dict(x=x, y=y), **options)
    else:
        return pd.Series(dict(x=x, y=y, z=z), **options)

animate(results, draw_func, *args, interval=None)

Animate results from a simulation.

Parameters:

Name Type Description Default
results TimeFrame

Results to animate.

required
draw_func callable

Function that draws state.

required
*args

Additional positional arguments passed to draw_func.

()
interval float

Time between frames in seconds. Defaults to None.

None

Raises:

Type Description
ValueError

If results is not a TimeFrame or draw_func is not callable

Source code in modsim/modsim.py
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
def animate(results, draw_func, *args, interval=None):
    """Animate results from a simulation.

    Args:
        results (TimeFrame): Results to animate.
        draw_func (callable): Function that draws state.
        *args: Additional positional arguments passed to draw_func.
        interval (float, optional): Time between frames in seconds. Defaults to None.

    Raises:
        ValueError: If results is not a TimeFrame or draw_func is not callable
    """
    if not isinstance(results, pd.DataFrame):
        raise ValueError("results must be a TimeFrame")
    if not callable(draw_func):
        raise ValueError("draw_func must be callable")
    plt.figure()
    try:
        for t, state in results.iterrows():
            draw_func(t, state, *args)
            plt.show()
            if interval:
                sleep(interval)
            clear_output(wait=True)
        draw_func(t, state, *args)
        plt.show()
    except KeyboardInterrupt:
        pass

cart2pol(x, y, z=None)

Convert Cartesian coordinates to polar.

Parameters:

Name Type Description Default
x number or sequence

x coordinate.

required
y number or sequence

y coordinate.

required
z number or sequence

z coordinate. Defaults to None.

None

Returns:

Name Type Description
tuple

(theta, rho) or (theta, rho, z).

Raises:

Type Description
ValueError

If x or y are not numeric or array-like, or if z is provided but not numeric or array-like

Source code in modsim/modsim.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def cart2pol(x, y, z=None):
    """Convert Cartesian coordinates to polar.

    Args:
        x (number or sequence): x coordinate.
        y (number or sequence): y coordinate.
        z (number or sequence, optional): z coordinate. Defaults to None.

    Returns:
        tuple: (theta, rho) or (theta, rho, z).

    Raises:
        ValueError: If x or y are not numeric or array-like, or if z is provided but not numeric or array-like
    """
    if not isinstance(x, (int, float, list, tuple, np.ndarray, pd.Series)):
        raise ValueError("x must be numeric or array-like")
    if not isinstance(y, (int, float, list, tuple, np.ndarray, pd.Series)):
        raise ValueError("y must be numeric or array-like")
    if z is not None and not isinstance(z, (int, float, list, tuple, np.ndarray, pd.Series)):
        raise ValueError("z must be numeric or array-like")
    x = np.asarray(x)
    y = np.asarray(y)
    rho = np.hypot(x, y)
    theta = np.arctan2(y, x)
    if z is None:
        return theta, rho
    else:
        return theta, rho, z

contour(df, **options)

Makes a contour plot from a DataFrame.

Wrapper for plt.contour https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.contour.html

Note: columns and index must be numerical

Parameters:

Name Type Description Default
df DataFrame

DataFrame to plot.

required
**options

Additional keyword arguments for plt.contour.

{}
Source code in modsim/modsim.py
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
def contour(df, **options):
    """Makes a contour plot from a DataFrame.

    Wrapper for plt.contour
    https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.contour.html

    Note: columns and index must be numerical

    Args:
        df (pd.DataFrame): DataFrame to plot.
        **options: Additional keyword arguments for plt.contour.
    """
    fontsize = options.pop("fontsize", 12)
    underride(options, cmap="viridis")
    x = df.columns
    y = df.index
    X, Y = np.meshgrid(x, y)
    cs = plt.contour(X, Y, df, **options)
    plt.clabel(cs, inline=1, fontsize=fontsize)

crossings(series, value)

Find the labels where the series passes through a given value.

Parameters:

Name Type Description Default
series Series

Series with increasing numerical index.

required
value float

Value to find crossings for.

required

Returns:

Type Description

np.ndarray: Array of labels where the series crosses the value.

Source code in modsim/modsim.py
445
446
447
448
449
450
451
452
453
454
455
456
457
def crossings(series, value):
    """Find the labels where the series passes through a given value.

    Args:
        series (pd.Series): Series with increasing numerical index.
        value (float): Value to find crossings for.

    Returns:
        np.ndarray: Array of labels where the series crosses the value.
    """
    values = series.values - value
    interp = InterpolatedUnivariateSpline(series.index, values)
    return interp.roots()

decorate(**options)

Decorate the current axes.

Call decorate with keyword arguments like decorate(title='Title', xlabel='x', ylabel='y')

The keyword arguments can be any of the axis properties https://matplotlib.org/api/axes_api.html

Parameters:

Name Type Description Default
**options

Keyword arguments for axis properties.

{}
Source code in modsim/modsim.py
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
def decorate(**options):
    """Decorate the current axes.

    Call decorate with keyword arguments like
    decorate(title='Title',
             xlabel='x',
             ylabel='y')

    The keyword arguments can be any of the axis properties
    https://matplotlib.org/api/axes_api.html

    Args:
        **options: Keyword arguments for axis properties.
    """
    ax = plt.gca()
    ax.set(**options)

    handles, labels = ax.get_legend_handles_labels()
    if handles:
        ax.legend(handles, labels)

    plt.tight_layout()

flip(p=0.5)

Flips a coin with the given probability.

Parameters:

Name Type Description Default
p float

Probability between 0 and 1.

0.5

Returns:

Name Type Description
bool

True or False.

Source code in modsim/modsim.py
81
82
83
84
85
86
87
88
89
90
def flip(p=0.5):
    """Flips a coin with the given probability.

    Args:
        p (float): Probability between 0 and 1.

    Returns:
        bool: True or False.
    """
    return np.random.random() < p

gradient(series, **options)

Computes the numerical derivative of a series.

If the elements of series have units, they are dropped.

Parameters:

Name Type Description Default
series Series

Series object.

required
**options

Additional keyword arguments for np.gradient.

{}

Returns:

Type Description

pd.Series: Series with the same subclass as the input.

Raises:

Type Description
ValueError

If series is not a pandas Series

Source code in modsim/modsim.py
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
def gradient(series, **options):
    """Computes the numerical derivative of a series.

    If the elements of series have units, they are dropped.

    Args:
        series (pd.Series): Series object.
        **options: Additional keyword arguments for np.gradient.

    Returns:
        pd.Series: Series with the same subclass as the input.

    Raises:
        ValueError: If series is not a pandas Series
    """
    if not isinstance(series, pd.Series):
        raise ValueError("series must be a pandas Series")
    x = series.index
    y = series.values
    a = np.gradient(y, x, **options)
    return series.__class__(a, series.index)

has_nan(a)

Check whether an array or Series contains any NaNs.

Parameters:

Name Type Description Default
a array - like

NumPy array or Pandas Series.

required

Returns:

Name Type Description
bool

True if any NaNs are present, False otherwise.

Source code in modsim/modsim.py
460
461
462
463
464
465
466
467
468
469
def has_nan(a):
    """Check whether an array or Series contains any NaNs.

    Args:
        a (array-like): NumPy array or Pandas Series.

    Returns:
        bool: True if any NaNs are present, False otherwise.
    """
    return np.any(np.isnan(a))

interpolate(series, **options)

Create an interpolation function from a Series.

Parameters:

Name Type Description Default
series Series

Series object with strictly increasing index.

required
**options

Additional keyword arguments for scipy.interpolate.interp1d.

{}

Returns:

Name Type Description
callable

Function that maps from the index to the values.

Raises:

Type Description
ValueError

If the index contains NaNs or is not strictly increasing.

Source code in modsim/modsim.py
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
def interpolate(series, **options):
    """Create an interpolation function from a Series.

    Args:
        series (pd.Series): Series object with strictly increasing index.
        **options: Additional keyword arguments for scipy.interpolate.interp1d.

    Returns:
        callable: Function that maps from the index to the values.

    Raises:
        ValueError: If the index contains NaNs or is not strictly increasing.
    """
    if has_nan(series.index):
        msg = """The Series you passed to interpolate contains
                 NaN values in the index, which would result in
                 undefined behavior.  So I'm putting a stop to that."""
        raise ValueError(msg)

    if not is_strictly_increasing(series.index):
        msg = """The Series you passed to interpolate has an index
                 that is not strictly increasing, which would result in
                 undefined behavior.  So I'm putting a stop to that."""
        raise ValueError(msg)

    # make the interpolate function extrapolate past the ends of
    # the range, unless `options` already specifies a value for `fill_value`
    underride(options, fill_value="extrapolate")

    # call interp1d, which returns a new function object
    x = series.index
    y = series.values
    interp_func = interp1d(x, y, **options)
    return interp_func

interpolate_inverse(series, **options)

Interpolate the inverse function of a Series.

Parameters:

Name Type Description Default
series Series

Series representing a mapping from a to b.

required
**options

Additional keyword arguments for scipy.interpolate.interp1d.

{}

Returns:

Name Type Description
callable

Interpolation object, can be used as a function from b to a.

Source code in modsim/modsim.py
520
521
522
523
524
525
526
527
528
529
530
531
532
def interpolate_inverse(series, **options):
    """Interpolate the inverse function of a Series.

    Args:
        series (pd.Series): Series representing a mapping from a to b.
        **options: Additional keyword arguments for scipy.interpolate.interp1d.

    Returns:
        callable: Interpolation object, can be used as a function from b to a.
    """
    inverse = pd.Series(series.index, index=series.values)
    interp_func = interpolate(inverse, **options)
    return interp_func

is_strictly_increasing(a)

Check whether the elements of an array are strictly increasing.

Parameters:

Name Type Description Default
a array - like

NumPy array or Pandas Series.

required

Returns:

Name Type Description
bool

True if strictly increasing, False otherwise.

Source code in modsim/modsim.py
472
473
474
475
476
477
478
479
480
481
def is_strictly_increasing(a):
    """Check whether the elements of an array are strictly increasing.

    Args:
        a (array-like): NumPy array or Pandas Series.

    Returns:
        bool: True if strictly increasing, False otherwise.
    """
    return np.all(np.diff(a) > 0)

leastsq(error_func, x0, *args, **options)

Find the parameters that yield the best fit for the data using least squares.

Parameters:

Name Type Description Default
error_func callable

Function that computes a sequence of errors.

required
x0 array - like

Initial guess for the best parameters.

required
*args

Additional positional arguments passed to error_func.

()
**options

Additional keyword arguments passed to scipy.optimize.leastsq.

{}

Returns:

Name Type Description
tuple

(best_params, details) best_params: Best-fit parameters (same type as x0 if possible). details: SimpleNamespace with fit details and success flag.

Source code in modsim/modsim.py
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def leastsq(error_func, x0, *args, **options):
    """Find the parameters that yield the best fit for the data using least squares.

    Args:
        error_func (callable): Function that computes a sequence of errors.
        x0 (array-like): Initial guess for the best parameters.
        *args: Additional positional arguments passed to error_func.
        **options: Additional keyword arguments passed to scipy.optimize.leastsq.

    Returns:
        tuple: (best_params, details)
            best_params: Best-fit parameters (same type as x0 if possible).
            details: SimpleNamespace with fit details and success flag.
    """
    # override `full_output` so we get a message if something goes wrong
    options["full_output"] = True

    # run leastsq
    t = scipy.optimize.leastsq(error_func, x0=x0, args=args, **options)
    best_params, cov_x, infodict, mesg, ier = t

    # pack the results into a ModSimSeries object
    details = SimpleNamespace(cov_x=cov_x,
                              mesg=mesg,
                              ier=ier,
                              **infodict)
    details.success = details.ier in [1,2,3,4]

    # if we got a Params object, we should return a Params object
    if isinstance(x0, Params):
        best_params = Params(pd.Series(best_params, x0.index))

    # return the best parameters and details
    return best_params, details

linrange(start, stop=None, step=1)

Make an array of equally spaced values.

Parameters:

Name Type Description Default
start float

First value.

required
stop float

Last value (might be approximate). Defaults to None.

None
step float

Difference between elements. Defaults to 1.

1

Returns:

Type Description

np.ndarray: Array of equally spaced values.

Source code in modsim/modsim.py
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def linrange(start, stop=None, step=1):
    """Make an array of equally spaced values.

    Args:
        start (float): First value.
        stop (float, optional): Last value (might be approximate). Defaults to None.
        step (float, optional): Difference between elements. Defaults to 1.

    Returns:
        np.ndarray: Array of equally spaced values.
    """
    if stop is None:
        stop = start
        start = 0
    n = int(round((stop-start) / step))
    return linspace(start, stop, n+1)

magnitude(x)

Return the magnitude of a Quantity or number.

Parameters:

Name Type Description Default
x object

Quantity or number.

required

Returns:

Name Type Description
float

Magnitude as a plain number.

Source code in modsim/modsim.py
712
713
714
715
716
717
718
719
720
721
def magnitude(x):
    """Return the magnitude of a Quantity or number.

    Args:
        x (object): Quantity or number.

    Returns:
        float: Magnitude as a plain number.
    """
    return x.magnitude if hasattr(x, 'magnitude') else x

make_series(x, y, **options)

Make a Pandas Series.

Parameters:

Name Type Description Default
x sequence

Sequence used as the index.

required
y sequence

Sequence used as the values.

required
**options

Additional keyword arguments for pd.Series.

{}

Returns:

Type Description

pd.Series: Pandas Series.

Raises:

Type Description
ValueError

If x or y are not array-like or have different lengths

Source code in modsim/modsim.py
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
def make_series(x, y, **options):
    """Make a Pandas Series.

    Args:
        x (sequence): Sequence used as the index.
        y (sequence): Sequence used as the values.
        **options: Additional keyword arguments for pd.Series.

    Returns:
        pd.Series: Pandas Series.

    Raises:
        ValueError: If x or y are not array-like or have different lengths
    """
    validate_array_like(x, "x")
    validate_array_like(y, "y")
    if len(x) != len(y):
        raise ValueError("x and y must have the same length")
    underride(options, name='values')
    if isinstance(y, pd.Series):
        y = y.values
    series = pd.Series(y, index=x, **options)
    series.index.name = 'index'
    return series

maximize_scalar(func, *args, **kwargs)

Find the input value that maximizes func.

Wrapper for https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html

Parameters:

Name Type Description Default
func callable

Function to be maximized.

required
*args

Additional positional arguments passed to func.

()
**kwargs

Additional keyword arguments passed to minimize_scalar.

{}

Returns:

Name Type Description
OptimizeResult

Object containing the maximum and optimization details.

Raises:

Type Description
Exception

If the optimization does not succeed.

Source code in modsim/modsim.py
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def maximize_scalar(func, *args, **kwargs):
    """Find the input value that maximizes `func`.

    Wrapper for https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html

    Args:
        func (callable): Function to be maximized.
        *args: Additional positional arguments passed to `func`.
        **kwargs: Additional keyword arguments passed to `minimize_scalar`.

    Returns:
        OptimizeResult: Object containing the maximum and optimization details.

    Raises:
        Exception: If the optimization does not succeed.
    """
    def min_func(*args):
        return -func(*args)

    underride(kwargs, __func_name='maximize_scalar')

    res = minimize_scalar(min_func, *args, **kwargs)

    # we have to negate the function value before returning res
    res.fun = -res.fun
    return res

minimize_scalar(func, *args, **kwargs)

Find the input value that minimizes func.

Wrapper for https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html

Parameters:

Name Type Description Default
func callable

Function to be minimized.

required
*args

Additional positional arguments passed to func.

()
**kwargs

Additional keyword arguments passed to minimize_scalar.

{}

Returns:

Name Type Description
OptimizeResult

Object containing the minimum and optimization details.

Raises:

Type Description
Exception

If the optimization does not succeed.

Source code in modsim/modsim.py
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
def minimize_scalar(func, *args, **kwargs):
    """Find the input value that minimizes `func`.

    Wrapper for
    https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html

    Args:
        func (callable): Function to be minimized.
        *args: Additional positional arguments passed to `func`.
        **kwargs: Additional keyword arguments passed to `minimize_scalar`.

    Returns:
        OptimizeResult: Object containing the minimum and optimization details.

    Raises:
        Exception: If the optimization does not succeed.
    """
    underride(kwargs, __func_name='minimize_scalar')

    method = kwargs.get('method', None)
    if method is None:
        method = 'bounded' if kwargs.get('bounds', None) else 'brent'
        kwargs['method'] = method

    if method == 'bounded':
        param_name = 'bounds'
        param_len = [2]
    else:
        param_name = 'bracket'
        param_len = [2, 3]

    func_name = kwargs.pop('__func_name')
    __check_kwargs(kwargs, param_name, param_len, lambda x: func(x, *args), func_name)

    res = spo.minimize_scalar(func, args=args, **kwargs)

    if not res.success:
        msg = ("minimize_scalar did not succeed."
               "The message it returned is: \n" +
               res.message)
        raise Exception(msg)

    return res

plot_segment(A, B, **options)

Plots a line segment between two Vectors.

For 3-D vectors, the z axis is ignored.

Additional options are passed along to plot().

Parameters:

Name Type Description Default
A Vector

First vector.

required
B Vector

Second vector.

required
**options

Additional keyword arguments for plt.plot.

{}

Raises:

Type Description
ValueError

If A or B are not Vector objects

Source code in modsim/modsim.py
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
def plot_segment(A, B, **options):
    """Plots a line segment between two Vectors.

    For 3-D vectors, the z axis is ignored.

    Additional options are passed along to plot().

    Args:
        A (Vector): First vector.
        B (Vector): Second vector.
        **options: Additional keyword arguments for plt.plot.

    Raises:
        ValueError: If A or B are not Vector objects
    """
    if not isinstance(A, pd.Series) or not isinstance(B, pd.Series):
        raise ValueError("A and B must be Vector objects")
    xs = A.x, B.x
    ys = A.y, B.y
    plt.plot(xs, ys, **options)

pol2cart(theta, rho, z=None)

Convert polar coordinates to Cartesian.

Parameters:

Name Type Description Default
theta number or sequence

Angle in radians.

required
rho number or sequence

Radius.

required
z number or sequence

z coordinate. Defaults to None.

None

Returns:

Name Type Description
tuple

(x, y) or (x, y, z).

Raises:

Type Description
ValueError

If theta or rho are not numeric or array-like, or if z is provided but not numeric or array-like

Source code in modsim/modsim.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def pol2cart(theta, rho, z=None):
    """Convert polar coordinates to Cartesian.

    Args:
        theta (number or sequence): Angle in radians.
        rho (number or sequence): Radius.
        z (number or sequence, optional): z coordinate. Defaults to None.

    Returns:
        tuple: (x, y) or (x, y, z).

    Raises:
        ValueError: If theta or rho are not numeric or array-like, or if z is provided but not numeric or array-like
    """
    if not isinstance(theta, (int, float, list, tuple, np.ndarray, pd.Series)):
        raise ValueError("theta must be numeric or array-like")
    if not isinstance(rho, (int, float, list, tuple, np.ndarray, pd.Series)):
        raise ValueError("rho must be numeric or array-like")
    if z is not None and not isinstance(z, (int, float, list, tuple, np.ndarray, pd.Series)):
        raise ValueError("z must be numeric or array-like")
    x = rho * np.cos(theta)
    y = rho * np.sin(theta)
    if z is None:
        return x, y
    else:
        return x, y, z

remove_from_legend(bad_labels)

Remove specified labels from the current plot legend.

Parameters:

Name Type Description Default
bad_labels list

Sequence of label strings to remove from the legend.

required
Source code in modsim/modsim.py
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def remove_from_legend(bad_labels):
    """Remove specified labels from the current plot legend.

    Args:
        bad_labels (list): Sequence of label strings to remove from the legend.
    """
    ax = plt.gca()
    handles, labels = ax.get_legend_handles_labels()
    handle_list, label_list = [], []
    for handle, label in zip(handles, labels):
        if label not in bad_labels:
            handle_list.append(handle)
            label_list.append(label)
    ax.legend(handle_list, label_list)

remove_units(namespace)

Remove units from the values in a Namespace (top-level only).

Parameters:

Name Type Description Default
namespace object

Namespace with attributes.

required

Returns:

Name Type Description
object

New Namespace object with units removed from values.

Source code in modsim/modsim.py
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
def remove_units(namespace):
    """Remove units from the values in a Namespace (top-level only).

    Args:
        namespace (object): Namespace with attributes.

    Returns:
        object: New Namespace object with units removed from values.
    """
    res = copy(namespace)
    for label, value in res.__dict__.items():
        if isinstance(value, pd.Series):
            value = remove_units_series(value)
        res.__dict__[label] = magnitude(value)
    return res

remove_units_series(series)

Remove units from the values in a Series (top-level only).

Parameters:

Name Type Description Default
series Series

Series with possible units.

required

Returns:

Type Description

pd.Series: New Series object with units removed from values.

Source code in modsim/modsim.py
741
742
743
744
745
746
747
748
749
750
751
752
753
def remove_units_series(series):
    """Remove units from the values in a Series (top-level only).

    Args:
        series (pd.Series): Series with possible units.

    Returns:
        pd.Series: New Series object with units removed from values.
    """
    res = copy(series)
    for label, value in res.items():
        res[label] = magnitude(value)
    return res

root_scalar(func, *args, **kwargs)

Find the input value that is a root of func.

Wrapper for https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root_scalar.html

Parameters:

Name Type Description Default
func callable

Function to find a root of.

required
*args

Additional positional arguments passed to func.

()
**kwargs

Additional keyword arguments passed to root_scalar.

{}

Returns:

Name Type Description
RootResults

Object containing the root and convergence information.

Raises:

Type Description
ValueError

If the solver does not converge.

Source code in modsim/modsim.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def root_scalar(func, *args, **kwargs):
    """Find the input value that is a root of `func`.

    Wrapper for
    https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root_scalar.html

    Args:
        func (callable): Function to find a root of.
        *args: Additional positional arguments passed to `func`.
        **kwargs: Additional keyword arguments passed to `root_scalar`.

    Returns:
        RootResults: Object containing the root and convergence information.

    Raises:
        ValueError: If the solver does not converge.
    """
    underride(kwargs, rtol=1e-4)

    __check_kwargs(kwargs, 'bracket', [2], lambda x: func(x, *args), 'root_scalar')

    res = spo.root_scalar(func, *args, **kwargs)

    if not res.converged:
        msg = ("scipy.optimize.root_scalar did not converge. "
               "The message it returned is:\n" + res.flag)
        raise ValueError(msg)

    return res

run_solve_ivp(system, slope_func, **options)

Compute a numerical solution to a differential equation using solve_ivp.

Parameters:

Name Type Description Default
system System

System object containing 'init', 't_end', and optionally 't_0'.

required
slope_func callable

Function that computes slopes.

required
**options

Additional keyword arguments for scipy.integrate.solve_ivp.

{}

Returns:

Name Type Description
tuple

(TimeFrame of results, details from solve_ivp)

Raises:

Type Description
ValueError

If required system attributes are missing or if the solver fails.

Source code in modsim/modsim.py
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
def run_solve_ivp(system, slope_func, **options):
    """Compute a numerical solution to a differential equation using solve_ivp.

    Args:
        system (System): System object containing 'init', 't_end', and optionally 't_0'.
        slope_func (callable): Function that computes slopes.
        **options: Additional keyword arguments for scipy.integrate.solve_ivp.

    Returns:
        tuple: (TimeFrame of results, details from solve_ivp)

    Raises:
        ValueError: If required system attributes are missing or if the solver fails.
    """
    system = remove_units(system)

    # make sure `system` contains `init`
    if not hasattr(system, "init"):
        msg = """It looks like `system` does not contain `init`
                 as a system variable.  `init` should be a State
                 object that specifies the initial condition:"""
        raise ValueError(msg)

    # make sure `system` contains `t_end`
    if not hasattr(system, "t_end"):
        msg = """It looks like `system` does not contain `t_end`
                 as a system variable.  `t_end` should be the
                 final time:"""
        raise ValueError(msg)

    # the default value for t_0 is 0
    t_0 = getattr(system, "t_0", 0)

    # try running the slope function with the initial conditions
    try:
        slope_func(t_0, system.init, system)
    except Exception as e:
        msg = """Before running scipy.integrate.solve_ivp, I tried
                 running the slope function you provided with the
                 initial conditions in `system` and `t=t_0` and I got
                 the following error:"""
        logger.error(msg)
        raise (e)

    # get the list of event functions
    events = options.get('events', [])

    # if there's only one event function, put it in a list
    try:
        iter(events)
    except TypeError:
        events = [events]

    for event_func in events:
        # make events terminal unless otherwise specified
        if not hasattr(event_func, 'terminal'):
            event_func.terminal = True

        # test the event function with the initial conditions
        try:
            event_func(t_0, system.init, system)
        except Exception as e:
            msg = """Before running scipy.integrate.solve_ivp, I tried
                     running the event function you provided with the
                     initial conditions in `system` and `t=t_0` and I got
                     the following error:"""
            logger.error(msg)
            raise (e)

    # get dense output unless otherwise specified
    if not 't_eval' in options:
        underride(options, dense_output=True)

    # run the solver
    bunch = solve_ivp(slope_func, [t_0, system.t_end], system.init,
                      args=[system], **options)

    # separate the results from the details
    y = bunch.pop("y")
    t = bunch.pop("t")

    # get the column names from `init`, if possible
    if hasattr(system.init, 'index'):
        columns = system.init.index
    else:
        columns = range(len(system.init))

    # evaluate the results at equally-spaced points
    if options.get('dense_output', False):
        try:
            num = system.num
        except AttributeError:
            num = 101
        t_final = t[-1]
        t_array = linspace(t_0, t_final, num)
        y_array = bunch.sol(t_array)

        # pack the results into a TimeFrame
        results = TimeFrame(y_array.T, index=t_array,
                        columns=columns)
    else:
        results = TimeFrame(y.T, index=t,
                        columns=columns)

    return results, bunch

savefig(filename, **options)

Save the current figure.

Keyword arguments are passed along to plt.savefig

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

Parameters:

Name Type Description Default
filename str

Name of the file to save the figure to.

required
**options

Additional keyword arguments for plt.savefig.

{}
Source code in modsim/modsim.py
609
610
611
612
613
614
615
616
617
618
619
620
621
def savefig(filename, **options):
    """Save the current figure.

    Keyword arguments are passed along to plt.savefig

    https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

    Args:
        filename (str): Name of the file to save the figure to.
        **options: Additional keyword arguments for plt.savefig.
    """
    print("Saving figure to file", filename)
    plt.savefig(filename, **options)

scalar_proj(v, w)

Returns the scalar projection of v onto w.

Which is the magnitude of the projection of v onto w.

Parameters:

Name Type Description Default
v array - like

Vector to project.

required
w array - like

Vector to project onto.

required

Returns:

Name Type Description
float

Scalar projection of v onto w.

Source code in modsim/modsim.py
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
def scalar_proj(v, w):
    """Returns the scalar projection of v onto w.

    Which is the magnitude of the projection of v onto w.

    Args:
        v (array-like): Vector to project.
        w (array-like): Vector to project onto.

    Returns:
        float: Scalar projection of v onto w.
    """
    return vector_dot(v, vector_hat(w))

show(obj)

Display a Series or Namespace as a DataFrame.

Parameters:

Name Type Description Default
obj object

Series or Namespace to display.

required

Returns:

Type Description

pd.DataFrame: DataFrame representation of the object.

Source code in modsim/modsim.py
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
def show(obj):
    """Display a Series or Namespace as a DataFrame.

    Args:
        obj (object): Series or Namespace to display.

    Returns:
        pd.DataFrame: DataFrame representation of the object.
    """
    if isinstance(obj, pd.Series):
        df = pd.DataFrame(obj)
        return df
    elif hasattr(obj, '__dict__'):
        return pd.DataFrame(pd.Series(obj.__dict__),
                            columns=['value'])
    else:
        return obj

source_code(obj)

Print the source code for a given object.

Parameters:

Name Type Description Default
obj object

Function or method object to print source for.

required
Source code in modsim/modsim.py
558
559
560
561
562
563
564
def source_code(obj):
    """Print the source code for a given object.

    Args:
        obj (object): Function or method object to print source for.
    """
    print(inspect.getsource(obj))

underride(d, **options)

Add key-value pairs to d only if key is not in d.

If d is None, create a new dictionary.

Parameters:

Name Type Description Default
d dict

Dictionary to update.

required
**options

Keyword arguments to add to d.

{}

Returns:

Name Type Description
dict

Updated dictionary.

Source code in modsim/modsim.py
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
def underride(d, **options):
    """Add key-value pairs to d only if key is not in d.

    If d is None, create a new dictionary.

    Args:
        d (dict): Dictionary to update.
        **options: Keyword arguments to add to d.

    Returns:
        dict: Updated dictionary.
    """
    if d is None:
        d = {}

    for key, val in options.items():
        d.setdefault(key, val)

    return d

validate_array_like(value, name)

Validate that a value is array-like.

Source code in modsim/modsim.py
71
72
73
74
def validate_array_like(value, name):
    """Validate that a value is array-like."""
    if not isinstance(value, (list, tuple, np.ndarray, pd.Series)):
        raise ValueError(f"{name} must be array-like, got {type(value)}")

validate_numeric(value, name)

Validate that a value is numeric.

Source code in modsim/modsim.py
66
67
68
69
def validate_numeric(value, name):
    """Validate that a value is numeric."""
    if not isinstance(value, (int, float)):
        raise ValueError(f"{name} must be numeric, got {type(value)}")

validate_positive(value, name)

Validate that a value is positive.

Source code in modsim/modsim.py
76
77
78
79
def validate_positive(value, name):
    """Validate that a value is positive."""
    if value <= 0:
        raise ValueError(f"{name} must be positive, got {value}")

vector_angle(v)

Angle between v and the positive x axis.

Only works with 2-D vectors.

Parameters:

Name Type Description Default
v array - like

2-D vector.

required

Returns:

Name Type Description
float

Angle in radians.

Raises:

Type Description
ValueError

If v is not array-like or is not 2D

Source code in modsim/modsim.py
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
def vector_angle(v):
    """Angle between v and the positive x axis.

    Only works with 2-D vectors.

    Args:
        v (array-like): 2-D vector.

    Returns:
        float: Angle in radians.

    Raises:
        ValueError: If v is not array-like or is not 2D
    """
    validate_array_like(v, "v")
    if len(v) != 2:
        raise ValueError("vector_angle only works with 2D vectors")
    x, y = v
    return np.arctan2(y, x)

vector_cross(v, w)

Cross product of v and w.

Parameters:

Name Type Description Default
v array - like

First vector.

required
w array - like

Second vector.

required

Returns:

Type Description

array-like: Cross product of v and w.

Raises:

Type Description
ValueError

If v or w are not array-like, or not both 2D or 3D, or not same length

Source code in modsim/modsim.py
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
def vector_cross(v, w):
    """Cross product of v and w.

    Args:
        v (array-like): First vector.
        w (array-like): Second vector.

    Returns:
        array-like: Cross product of v and w.

    Raises:
        ValueError: If v or w are not array-like, or not both 2D or 3D, or not same length
    """
    validate_array_like(v, "v")
    validate_array_like(w, "w")
    if len(v) != len(w):
        raise ValueError("Vectors must have the same length for cross product")
    if len(v) not in (2, 3):
        raise ValueError("Cross product only defined for 2D or 3D vectors")
    res = np.cross(v, w)
    if len(v) == 3:
        return Vector(*res)
    else:
        return res

vector_diff_angle(v, w)

Angular difference between two vectors, in radians.

Parameters:

Name Type Description Default
v array - like

First vector.

required
w array - like

Second vector.

required

Returns:

Name Type Description
float

Angular difference in radians.

Raises:

Type Description
ValueError

If v or w are not array-like or not same length

NotImplementedError

If the vectors are not 2-D.

Source code in modsim/modsim.py
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
def vector_diff_angle(v, w):
    """Angular difference between two vectors, in radians.

    Args:
        v (array-like): First vector.
        w (array-like): Second vector.

    Returns:
        float: Angular difference in radians.

    Raises:
        ValueError: If v or w are not array-like or not same length
        NotImplementedError: If the vectors are not 2-D.
    """
    validate_array_like(v, "v")
    validate_array_like(w, "w")
    if len(v) != len(w):
        raise ValueError("Vectors must have the same length for angle difference")
    if len(v) == 2:
        return vector_angle(v) - vector_angle(w)
    else:
        # TODO: see http://www.euclideanspace.com/maths/algebra/
        # vectors/angleBetween/
        raise NotImplementedError()

vector_dist(v, w)

Euclidean distance from v to w, with units.

Parameters:

Name Type Description Default
v array - like

First vector.

required
w array - like

Second vector.

required

Returns:

Name Type Description
float

Euclidean distance from v to w.

Raises:

Type Description
ValueError

If v or w are not array-like or not same length

Source code in modsim/modsim.py
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
def vector_dist(v, w):
    """Euclidean distance from v to w, with units.

    Args:
        v (array-like): First vector.
        w (array-like): Second vector.

    Returns:
        float: Euclidean distance from v to w.

    Raises:
        ValueError: If v or w are not array-like or not same length
    """
    validate_array_like(v, "v")
    validate_array_like(w, "w")
    if len(v) != len(w):
        raise ValueError("Vectors must have the same length for distance calculation")
    if isinstance(v, list):
        v = np.asarray(v)
    return vector_mag(v - w)

vector_dot(v, w)

Dot product of v and w.

Parameters:

Name Type Description Default
v array - like

First vector.

required
w array - like

Second vector.

required

Returns:

Name Type Description
float

Dot product of v and w.

Raises:

Type Description
ValueError

If v or w are not array-like or have different lengths

Source code in modsim/modsim.py
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
def vector_dot(v, w):
    """Dot product of v and w.

    Args:
        v (array-like): First vector.
        w (array-like): Second vector.

    Returns:
        float: Dot product of v and w.

    Raises:
        ValueError: If v or w are not array-like or have different lengths
    """
    validate_array_like(v, "v")
    validate_array_like(w, "w")
    if len(v) != len(w):
        raise ValueError("Vectors must have the same length")
    return np.dot(v, w)

vector_hat(v)

Unit vector in the direction of v.

Parameters:

Name Type Description Default
v array - like

Vector.

required

Returns:

Type Description

array-like: Unit vector in the direction of v.

Raises:

Type Description
ValueError

If v is not array-like

Source code in modsim/modsim.py
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
def vector_hat(v):
    """Unit vector in the direction of v.

    Args:
        v (array-like): Vector.

    Returns:
        array-like: Unit vector in the direction of v.

    Raises:
        ValueError: If v is not array-like
    """
    validate_array_like(v, "v")
    # check if the magnitude of the Quantity is 0
    mag = vector_mag(v)
    if mag == 0:
        return v
    else:
        return v / mag

vector_mag(v)

Vector magnitude.

Parameters:

Name Type Description Default
v array - like

Vector.

required

Returns:

Name Type Description
float

Magnitude of the vector.

Raises:

Type Description
ValueError

If v is not array-like or is empty

Source code in modsim/modsim.py
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
def vector_mag(v):
    """Vector magnitude.

    Args:
        v (array-like): Vector.

    Returns:
        float: Magnitude of the vector.

    Raises:
        ValueError: If v is not array-like or is empty
    """
    validate_array_like(v, "v")
    if len(v) == 0:
        raise ValueError("Vector cannot be empty")
    return np.sqrt(np.dot(v, v))

vector_mag2(v)

Vector magnitude squared.

Parameters:

Name Type Description Default
v array - like

Vector.

required

Returns:

Name Type Description
float

Magnitude squared of the vector.

Raises:

Type Description
ValueError

If v is not array-like or is empty

Source code in modsim/modsim.py
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
def vector_mag2(v):
    """Vector magnitude squared.

    Args:
        v (array-like): Vector.

    Returns:
        float: Magnitude squared of the vector.

    Raises:
        ValueError: If v is not array-like or is empty
    """
    validate_array_like(v, "v")
    if len(v) == 0:
        raise ValueError("Vector cannot be empty")
    return np.dot(v, v)

vector_perp(v)

Perpendicular Vector (rotated left).

Only works with 2-D Vectors.

Parameters:

Name Type Description Default
v array - like

2-D vector.

required

Returns:

Name Type Description
Vector

Perpendicular vector.

Raises:

Type Description
ValueError

If v is not array-like or is not 2D

Source code in modsim/modsim.py
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
def vector_perp(v):
    """Perpendicular Vector (rotated left).

    Only works with 2-D Vectors.

    Args:
        v (array-like): 2-D vector.

    Returns:
        Vector: Perpendicular vector.

    Raises:
        ValueError: If v is not array-like or is not 2D
    """
    validate_array_like(v, "v")
    if len(v) != 2:
        raise ValueError("vector_perp only works with 2D vectors")
    x, y = v
    return Vector(-y, x)

vector_polar(v)

Vector magnitude and angle.

Parameters:

Name Type Description Default
v array - like

Vector.

required

Returns:

Name Type Description
tuple

(magnitude, angle in radians).

Raises:

Type Description
ValueError

If v is not array-like

Source code in modsim/modsim.py
979
980
981
982
983
984
985
986
987
988
989
990
991
992
def vector_polar(v):
    """Vector magnitude and angle.

    Args:
        v (array-like): Vector.

    Returns:
        tuple: (magnitude, angle in radians).

    Raises:
        ValueError: If v is not array-like
    """
    validate_array_like(v, "v")
    return vector_mag(v), vector_angle(v)

vector_proj(v, w)

Projection of v onto w.

Parameters:

Name Type Description Default
v array - like

Vector to project.

required
w array - like

Vector to project onto.

required

Returns:

Type Description

array-like: Projection of v onto w.

Raises:

Type Description
ValueError

If v or w are not array-like or not same length

Source code in modsim/modsim.py
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
def vector_proj(v, w):
    """Projection of v onto w.

    Args:
        v (array-like): Vector to project.
        w (array-like): Vector to project onto.

    Returns:
        array-like: Projection of v onto w.

    Raises:
        ValueError: If v or w are not array-like or not same length
    """
    validate_array_like(v, "v")
    validate_array_like(w, "w")
    if len(v) != len(w):
        raise ValueError("Vectors must have the same length for projection")
    w_hat = vector_hat(w)
    return vector_dot(v, w_hat) * w_hat